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ABSTRACT.

Support Vector Machines (SVM) is a machine learning tool, originally developed in the field of

artificial intelligence, to perform both classification and regression. In this paper we show how

SVM can be used to determine the most relevant quantities to characterize the confinement transition

from low to high confinement regimes in Tokamak plasmas. A set of 27 signals is used as starting

point. The signals are discarded one by one until an optimal number of relevant waveforms is

reached, which is the best tradeoff between keeping a limited number of quantities and not loosing

essential information. The method has been applied to a database of 749 JET discharges and an

additional database of 150 JET discharges has been used to test the results obtained.

1. INTRODUCTION

The aim of this work is to develop an automatic feature extractor to find the most relevant signals

to characterize a physical behavior in large datasets. The system has been applied to study the

transition from the Low (L) to the High (H) confinement mode (L/H transition).

The Feature Extractor System (FES) has been based on the development of a binary classification

system to distinguish between L mode and H mode. This means that a pattern recognition system to

determine the confinement regime has been developed. This is accomplished through the creation

of a decision function to split the input space in two regions. This decision function has been used

to find the main quantities that best describe the L/H transition.

27 signals (Table I) have been selected as candidates to provide discriminant characteristics for

the pattern recognition problem. They include both physical quantities describing the plasma and

geometrical parameters to take into account the position/shape of the plasma inside the vacuum

vessel. This set of signals has been used in previous works about L/H transitions in JET [1].

A symmetric temporal segment of 100ms around the transition instant has been selected. This

temporal length has been chosen because the best characterization of the transitions requires to be

close enough to the change of regime. A typical temporal interval can be the one selected [1].

To develop the FES a set of 749 JET discharges has been used. The high dimensionality of the

problem to solve should be noticed. The 27 signals are sampled with a period of 1 ms in the temporal

segment around the transition. Therefore, each time instant is represented by a vector of 27

components (one per signal). This implies the use of 200 vectors per discharge which means to

manage 149800 of these vectors to determine the decision function.

A first alternative to determine the quantities more relevant to characterize the L-H transition

are tree structured methodologies, such as Classification and Regression Trees [2] (CART). The

CART provides as result the variable ranking of the most relevant signals for a classification

problem. CART is a non linear technique but presents the disadvantage of being very heavy in

terms of computational times. Already for less than 100 discharges, the computation becomes

prohibitively long.

A second alternative has been the use of the Principal Components Analysis (PCA) [3]. PCA is
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a method for reexpressing multivariate data. PCA creates a set of orthogonal components that are

linear combinations of the original data with maximum variance. By examining the relationship

between the Principal Components and the input data (Principal Components Loadings), it is possible

to determine the importance of the original variables and eliminate the less interesting ones. This is

carried out through their correlation matrix.

Unfortunately, the signals used to characterize the L/H transition show a small correlation, and

thus, the variance covered by the first principal components is small (figure 1). For example, using

the first eight principal components, only 84.51% of the original variance is covered.

The third option has been to use SVM [4] as classifier. This approach has the extra advantage of

being able to easily handle the big amount of data required. The developed system is a feature

extractor system (FES) that selects the most relevant characteristic for the L/H transition phenomenon.

This paper is structured as follows: an introduction to SVM is given in Section III. Section IV

describes the feature extractor. Finally, the results of the JET L/H transition feature extraction are

given in Section 4.

2. SVM FOR BINARY CLASSIFICATION

This section contains a brief explanation about SVM theory for binary classification problems.

For classification of nonseparable data, a function (called decision function) is obtained. This

function divides the input space in two regions that classify the data into two different classes. The

decision function is given by [6]:

(1)

The yi are the labels of the respective classes. In the case of a binary problem, both classes can be

distinguished by labels +1 and -1 respectively. The parameters αi*, i=1,…,n are the solution for the

following quadratic optimization problem:

Maximize the functional:

subject to the constraints:

given the training data (xi, yi), i=1,…,n, an inner product kernel H, and a regularization

parameter C.

Only a subset of the parameters αi in equation (1) is nonzero. The data points xk associated with

the nonzero αi are called Support Vectors (SVs). Therefore, the decision function is actually:

(2)

D(x) = Σ αi yi H (xi,xj) + b *
n

i=1

L(α) = Σ αi - - yi  Σ αiαjyiyjH (xi,xj) 
n

i=1

n

i,j=1

1
2

Σ yiαi =0;
n

i=1
 0 ≤ αi ≤ Cn; i = 1,...,n

D(x) = Σ αi yi H (xi,x) + b 
n

i=1
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The complexity of the model obtained is dependent on the number of SVs: the fewer SVs the lower

the model complexity.

For a two class classification problem, SVM returns the separation hyperplane that maximizes

the distance to the samples of both classes (figure 2).

3. SVM-BASED FEATURE EXTRACTOR

The objective of the SVM-based feature extractor is to find the most important features (signals) to

characterize the L/H transition. It is a 2-class classification problem based on SVM.

The method consists of determining the relative weight among signals in the decision function.

To this end, a separating hyperplane between the L and H confinement modes is computed with a

linear kernel (figure 2 is an example of a separating hyperplane between two classes).

The hyperplane is a linear function that can be written as:

(3)

Ci: Weight of each feature

m: Number of features

b: Bias

It is possible to obtain the equation of this hyperplane by using the decision function given by

equation (2). Taking into account that a linear kernel has the mathematical expression H(x,x)

=[x′Ei + 1], this decision function is:

The decision function is equal to zero on the hyperplane.

Therefore,

(4)

Once the hyperplane equation has been obtained from the data, the FES must discard the least

C1X1 = C2X2 + ... + CmXm + b = 0

D(x) = Σ αi yi [x. xi + 1]
n

i=1

D(x) = Σ αi yi [(xi,1 . x1,..., xi,m . xm ) + 1]
SV

i=1

D(x) = Σ (αi yixi,1 . x1) +...
SV

i=1

+ Σ (αi yixi,m . xm) + Σ αi yi

SV

i=1

SV

i=1

0 =  Σ αi yixi,1  . x1 + ... 

 

SV

i=1

SV

i=1

SV

i=1
+  Σ αi yixi,m   . xm +  Σ αi yi , where

SV

i=1

SV

i=1
Cj = Σ αiyixi,j,    b = Σ αiyi
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relevant feature. In the general equation of a hyperplane (3), the most important features are those

whose Ck are the largest. Thus, the FES discards the smallest weight Ck and the process is repeated

again with a feature space of dimension m-1. For example, the equation of the 2-dimensional

hyperplane in figure 2 is 8x + 3y - 40 = 0. Therefore, the most important feature of the training data

is x. It can be proven that it is possible to choose a hyperplane Ckx + b = 0 that divides the example’s

feature space in two classes with less errors than a hyperplane Cjy + b = 0.

Figure 3 shows that the number of features in the final set relies on the model complexity of the

hyperplane computed for each set of features (figure 3). The complexity of a hyperplane is measured

by the number of SVs needed to define that hyperplane (equation 2). The number of features in the

final set is the one where the number of SVs increases significantly from a set of m features to a set

of m-1 features. In the case of figure 3, the final set of features contains 8 signals because it is the

last set where the number of the SVs to define the separating hyperplane keeps the same tendency.

4. L/H TRANSITION FEATURE EXTRACTION

The main features for the JET L/H transition have been obtained from a starting set of 27 signals

(Table I) in the interval of ±100ms around the transition and 749 JET discharges. The original

signals have been resampled (1 ksamples/s) and normalized (to avoid scaling problems). Three

different typical normalizations of the original data have been tested. In the first one, all data are

rescaled to the interval [0, 1]. In the second one, the data are transformed to have mean 0 and

variance 1. In the third normalization, the mean value of the signals is subtracted in each sample

and then the data are rescaled to the interval [-1, 1].

The best classification success rate (92.20%) have been obtained using the normalization between

0 and 1.

The equation of the hyperplane, with the most important features from Table 1, is shown in

Table 2. The success rate with this hyperplane has been tested with an additional set of 150 JET

discharges. This test set provides a non-biased estimation of the accuracy of the results to avoid the

potential overestimation that can affect the results of the training set. The success rate with these

150 discharges has been 90.04 %.

The set of the most relevant physical quantities to characterize the L/H transition in JET can be

also validated with the use of non-linear kernels. For example, using a Radial-Basis Function (RBF)

kernel, the classification success rate of the test set is 92.85 %: therefore the nonlinearities are not

a dominating effect and the analysis performed with the linear kernel can be considered accurate.

It should be noted that the use of 200 samples/discharge, 749 discharges and feature vectors with

high number of components (between 27 and 2) defines a very time consuming computation

problem. Therefore, high performance computing has been necessary. A parallel version of SVM

[7] has been used to allow the execution of the SVM classification problems. The computations

have been performed in the Lince cluster at CIEMAT. It is made up of nodes Xeon 3.2Ghz with

2GB of RAM and a low-latency Infiniband network.
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Table 2: Coefficients of the hyperplane of the final set
of signals

Table 1: Initial set of signals for the L/H transition.
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Figure 3: Example of the criterion used to select the final numberof features in the case study.

Figure 1: Principal Components Analysis of the L/H transition.

Figure 2: SVM classification in a two-dimensional space.
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