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1. INTRODUCTION

The aim of the paper is to study experimentally the poloidal mode number (m) spectrum produced

by a single toroidal mode number (n) Neoclassical Tearing Mode, showing how the sidebands of

this spectrum may interact together via magnetic coupling, and how this multiple resonant structure

interacts with the plasma, this could give a new point of view to understand the stability properties

of these modes. In fact we expect that these sidebands, having different m numbers from the main

one, can resonate inside the plasma at different radial positions: for example a n=1, m=2 mode

produces m=+/-1 sidebands, which  may lead to the formation of other magnetic islands at q=(m+1)/

n, (m-1)/n=3, 1.

In the paper this effect has been studied in advanced tokamak plasma scenarios with high

triangularity on JET [1] to investigate both the possible dependencies on plasma rotation and

normalized beta. In order to detect the presence of islands, a frequency domain coherence technique

[2] was implemented using two different diagnostic measurements: the signal from a fast magnetic

pick up coil and the set of 48 signals from the Electron Cyclotron Emission (ECE) fast radiometer

which measures the radial profile of electron temperature and its temporal fluctuations, with a

spatial resolution of about 4 cm and a sampling frequency of 500kHz. The technique is based on the

observation that a magnetic island induces also a particular structure in the radial temperature

profile fluctuations, in such a way that time fluctuations of the magnetic signals are linked to the

time fluctuations of temperature signals coming from localized points inside the plasma [3], and

coherence phase radial profile shows a p jump whenever an island is crossed moving along the

plasma radius. Also the temperature fluctuation auto-spectrum can be calculated, and can be used

in a rough approximation, together with temperature gradients, to calculate the periodic displacement

of magnetic surfaces due to island rotation, which is in turn  linked to island width. Starting from

the  magnetic spectrogram in Figure 1, in which also mode n number is highlighted, the whole

analysis can be summarized in a plot as Figure 2  in which the radial position of phase jumps for

each time slice and for each mode is shown. An example of the use of this method is shown for JET

pulse 77590, which is characterized by a 2.1MA plasma current, a 2.7T toroidal field, βn=2.2, and

an Advanced Tokamak scenario with a high triangularity configuration and a total power of

approximately 30MW subdivided in 20MW of neutral beam power, 7MW of ICRH and 2.5 MW of

LH heating. From the magnetic spectrogram the presence of two NTMs during the heating phase is

highlighted, in fact an early NTM appears at 4.2s and is identified by the green n=3 track, its m

number is estimated to be 7 since its frequency is slightly lower than three times the latter 2/1 mode

frequency. A larger 2/1 NTM (in red) appears at 6.5s and remains in the plasma for the rest of the

heating phase. In Figure 2 the location of coherence phase inversion is shown as a function of time,

and a contour plot of magnetic q profile has been over laid for reference. The q profile displayed is

inferred from the EFIT reconstruction constrained by Motional Stark Effect (MSE) polarimetry,

Charge Exchange Spectroscopy (CXS) and pressure data, and also ECE radii are calculated using

the reconstructed equilibrium magnetic field. In the plot the main 2/1 NTM localized in both the
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high field side at 2.7m and the low field side at 3.4m is visible. The uncertainty on mode position is

about 3.1cm, that is the average distance between the two neighbouring channels that enclose the

phase jump. This localization is not in perfect agreement with reconstructed q profile, that does not

show any q = 2 surface at that time, but on the other hand this surface has to be present in the plasma

since the related resonant mode is present. A secondary track is also present in the LFS and partially

in the HFS, this track is localized between the reconstructed q = 2 and q = 3 surfaces, a similar

experimental behaviour is observed in [4].

The magnetic frequency of a NTM in the easiest approximation depends on plasma rotation

frequency at the resonant surface, and since the toroidal component of flow rotation frequency (ωφ)

in advanced scenarios is order of magnitudes larger than the poloidal one, the resulting expression

for mode frequency is ω = nωφ (Rres).  A more detailed approach is used in [5].

Therefore to really understand the physical meaning of this second track a very important piece

of information comes from the profile of plasma toroidal rotation frequency. In fact accordingly to

[6], the main magnetic island can indeed generate a secondary island at a different resonant surface

inside the plasma, but only if the difference in toroidal rotation frequency between the two surfaces

is small enough. This secondary island should be born phase locked to the main one, in other words

it should have zero toroidal rotation in the frame of the moving main mode, generating a multiple

resonant structure which tends to rotate at the same angular speed at different resonant radii. Such

a structure is in clear conflict with the natural rotation shear of the plasma, and can interact with the

plasma itself via a torque, changing the rotation profile. An example of this behaviour is shown in

Figure 3, in which the temporal evolution of toroidal rotation radial profile, measured with CSX, is

shown. The first part of the heating phase exhibits a monotonic rotation profile from the plasma

edge to the core. At 5.55s  the doubling of 7/3 NTM amplitude is followed by a modification of the

rotational shear, with the creation of a low shear region between 3.4m and 3.6m  in major radius.

The rotation flattening in this zone, which therefore appears to be linked to the 7/3 NTM, has the

effect of modifying the rotation profile to the boundary conditions required for a double resonant

structure onset. In  the third part of the heating phase, from 6.6s on, the discharge is seriously

affected by the onset of the large 2/1 NTM, with a significant drop in confinement. A larger effect

on toroidal rotation is observed as well, in fact a negative rotational shear zone is created, with an

off axis rotation minimum around 3.36 meters, in agreement with the position of the 2/1 NTM. The

difference between black line and red line is very near to measure uncertainty (~5%), so further

investigation to confirm the negative rotational shear is needed. This is an evidence for the action

of a very localized braking mechanism, since the effect of the 2/1 mode is to reduce the rotation

frequency around 3.35m and 3.6m, while at 3.4m and 3.5m rotation is unchanged. The origin of

this braking mechanism is still to be understood, and the presence of an interaction between the

mode and an external error field is possible.

In this paper the presence of a double resonant structure in  ECE phase radial profiles has been

shown, also the consequences of this structure on plasma toroidal rotation has been analyzed, giving
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arguments for a localized torque mechanism acting at the resonant surface.

The effect of local reversal in the rotational shear on the discharge still has to be analyzed, to

decouple the effects of  heat transport across the magnetic island from rotation profile effects, since

it is  expected that the latter would affect core turbulence and transport as well.
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Figure 3: In the upper plot the total input power coupled
to the plasma is plotted in black for Pulse No: 77590,
n = 3 and n = 1 magnetic amplitudes are over plotted
(a.u.). In the lower plot toroidal rotation  evolution from
Charge exchange spectroscopy is plotted for different
radial positions in the plasma.

Figure 2: Mode position detected by ECE phase jumps,
as a function of time and channels radii for Pulse No:
77590. Red points are  due to n = 1 mode and green points
to n = 3 mode. The contour plot of q-profile inferred from
the EFIT reconstruction constrained by MSE, CXS and
pressure data  is plotted .

 

3.5

Pulse No: 77590

3.0

2.5

4 6 8 10

R
 (m

)

Time (s)

JG
09

.2
24

-2
c

30

20

10

0

Pulse No: 77590

50

40

30

4 6 8 10

P
 (M

W
)

A
ng

ul
ar

 fe
qu

en
cy

(1
04

 ra
d/

s)

Time (s)

JG
09

.2
24

-3
c

R = 3.36261m
R = 3.42589m
R = 3.50039m
R = 3.57227m

Figure 1: Magnetic spectrogram from a 1MHz bandwidth
pick up coil for Pulse No: 77590. The different coloured
tracks are the output of the mode tracking algorithm. Red
tracks are linked to n = 1 activity, blue tracks to n = 2
activity and green tracks to n = 3 activity.
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