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1. INTRODUCTION

The accurate determination of electron density ne and temperature Te is important for many areas

of Tokamak research. At JET, several different systems make measurements which depend on these

but are based on very different physics, have different spatial resolutions and observe different

regions of the plasma. Bayesian analysis and forward modelling provide a conceptually simple

method to obtain and represent the information that can be inferred from the combination of an

arbitrary number of observations and prior assumptions about all the physical quantities on which

they depend. This paper gives results from the Bayesian Inversion for a typical JET plasma using

models developed for the Interferometry [1], core LIDAR [2] and edge LIDAR [3] diagnostics.

2. MODELS

For each diagnostic, a ’forward model’ is created which can predict the distribution of measurements

which might be observed given a predefined exact physical state. The interferometry is modelled

simply by integrating’ne along its lines of sight but the LIDAR model is considerably more complex,

depending on many extra calibration/auxiliary parameters. Figure 1 shows the lines of sights of the

three diagnostics and an overview and sample output of the LIDAR model.

In the standard analyses, the auxiliary parameters must be fixed to calibration measurements or

determined by statistical cross calibration with other diagnostics. While these can be used as the

prior distribution for the parameters here, there is sufficient information from the combined systems

to use weak priors in many cases. In particular, because the spectrometer sensitivities of the edge

LIDAR system are difficult to determine (and to demonstrate the applicability of the technique to

cases where some calibration parameters are completely unknown), these parameters are assigned

effectively no prior information - a uniform distribution. The timing parameters which effect inferred

positions, are also assigned uniform priors.

For the plasma, ne and Te are assumed constant on any poloidal flux surface so are modelled as

1D functions of poloidal flux ψN (normalised to 0 at the magnetic axis and 1 at the last closed flux

surface), which is taken from the JET routine equilibirum code [4]. A linear interpolation of 40

‘knots’ at fixed positions is used, with more in the H-Mode pedestal region (see figure 2a/b). The

knot magnitudes are the parameters for which the posterior is obtained.

3. RESULTS - A TYPICAL POSTERIOR

The posterior distribution gives the probability for any combination of the plasma and calibration

parameters and so describes all of the information that can be known about these parameters, given

all the prior assumptions and all the observations. It includes all uncertainties, systematic and random,

from all modelled sources. (For previous examples of the procedure, see e.g. [5, 6]). To examine

this high-dimensional distribution, a series of representative samples of are drawn. Each sample is

a complete description of a possible state of the entire system, that is consistent with all the

diagnostics. They can be displayed separately or used to generate histograms for each parameter,

giving the marginal distribution which expresses what can be inferred about that parameter, independent

of all others. Figure 2 shows several samples of the ne and Te profiles for a time point in a typical H-
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Mode JET plasma, as well as the marginal distributions for regular points along the Ne and Te profiles

from the same posterior. The time point used lies between ELMs, where the profiles are unlikely to

have evolved over the few milliseconds between the capture/integration times of different diagnostics.

Despite the complete freedom (weak prior distributions) given to many of the calibration parameters

which must be fixed in the standard approach, the results are good and many benefits of the integrated

approach can be seen. The overall magnitude of the density differs to the standard analysis of core

LIDAR due to the inclusion of the Interferometry diagnostic’s very accurate integral information. The

profiles also show much more is inferred in the pedestal region than the core LIDAR standard analysis

shows. While this appears entirely due to the edge LIDAR data, core LIDAR provides much of the

information. Because the priors given for many of the edge LIDAR calibration parameters were very

weak in this case, edge LIDAR alone is not sufficient to determine the pedestal profiles. For instance,

while the edge LIDAR data can be used to find the ne pedestal shape, it cannot give its magnitude as

the overall sensitivity of the optics is not known and so the prior on that parameter was uniform. The

same is true for core LIDAR, meaning it provides the edge pedestal density only relative to the core.

The interferometry absolute density information completes the picture and so, without stronger prior

information, only together can the three systems provide the profile.

The Te pedestal is similar because the priors for the edge LIDAR spectrometer sensitivities were

uniform. The edge LIDAR data alone does heavily constrain the possible sensitivity combinations

because the same set must be consistent for the entire profile but there remains a degree of freedom

which is always enough to allow any pedestal Te. The core LIDAR system, with well determined

sensitivities, can in principal provide the edge temperature but lacks the resolution to do this by itself.

Consideration of the instrument convolution (which is included in the model but not in the standard

analysis) increases the effective resolution but shows that practically, it is a ~ 12cm spatial integral of

Te that is really known. Combined with shape information from the edge LIDAR data, it is just

sufficient to reconstruct the profile. Figure 3 shows the inferred Te profile for just the edge region

plotted against major radius. Also shown is the result from the standard analysis of the edge LIDAR

data, using values for the spectrometer sensitivities which have not been validated. The apparent

discrepancy is simply due to the uncertainty in these parameters which, while difficult to identify and

treat when interpreting the results, is rigorously and inherently handled with the Bayeisn approach.

The posterior distribution also describes what can be inferred about the calibration parameters

themselves. For a selection of times in 2 pulses, samples of the posterior obtained and the ratios of

the spectrometer sensitivities taken from each (shown in Figure 4). Each one represents what can

be known about that parameter from the model, prior and that data. Shown as bands is the combined

distribution which could be used as a prior for future inversions.

4. PEDESTAL PARAMETERISATION

It is often useful to use a stronger plasma parameterisation in order to directly obtain the posterior

over quantities of interest. For instance, the ne pedestal is believed to be well approximated by a

hyperbolic tangent function[9] of which the width is of particular interest as its scaling with parameters

such as ion gyro radius have particular importance for ITER [10]. Figure 5 shows the posterior
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distribution for the pedestal width w, obtained using the parame terisation ne = ne
ped ( 1+tanh(2(ψ0

ψN) = w) ) added to the knot parameterisation for the core. Samples of ne(ψN) are also shown. The

strong assumption of shape, when valid, is particularly useful if the LIDAR signals are weak as

in this case where the data has a noise level of ~15%, which can be seen to strongly affect the

standard analysis.

In future work, the posterior will be found for a series of pulses where the quantities of interest

(e.g ρ) were varied. From these the information that can be inferred from the LIDAR systems about

any relationship of the pedestal quantities on those parameters will be found, supplementing the

analysis using the High Resolution Thomson Scattering[10].

CONCLUSIONS

The development of a model of the LIDAR Thomson Scattering diagnostic had been outlined and

its use to infer electron density and temperature profiles consistent with three systems at JET has

been demonstrated. The detail of the model allows the uncertainties and complex relationships of

various calibration parameters to be handled easily and rigorously. It is now necessary to include a

model for the plasma current and magnetic diagnostics (from [11]) in order to include in the

uncertainties, those from ψN, to which the combination of the core and edge LIDAR systems is

very sensitive, due to their distant lines of sight. The authors would like to thank A. Meakins for

work on the Genetic Algorithm used.
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Figure 1: a) Poloidal cross-section of JET and lines of sight of interferometry (dotted), core and edge LIDAR (dashed)
and typical flux surface geometry (gray). b) LIDAR Forward model outline using physics parameters (yellow) and
calibration/other parameters (light yellow). c) Core LIDAR digitiser trace for spectrometer channel 2 showing observed
data (blue) and likelihood distribution mean (red) and ±2σ (light red) from the model.

Figure 2: Profiles of electron density (a) and temperature (b) vs normalised poloidal flux of 8 samples from the
posterior distribution inferred from core LIDAR, edge LIDAR and interferometry with weak calibration parameter
priors. c/d) Marginalised posterior distribution for points along normalised poloidal flux. Also shown are the
parametrisation knot positions (vertical lines on a/b) and profiles from routine analysis of the High-Resolution Thomson
Scattering[7] (orange   ), Heterodyne Radiometer Electron Cyclotron Emission[8] (green   ) diagnostics and the
standard analysis of core LIDAR (magenta * and line).
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Figure 3: Te profile samples (left) and marginal distributions (right) on the magnetic axis plane (Z = Zmag) versus
major radius Rmag for the outboard plasma edge. Other diagnostics as in figure 2 with edge LIDAR standard analysis
(black/white +) based on unvalidated spectrometer sensitivity values.

Figure 4: Posterior distributions for sensitivity ratio of two edge LIDAR spectrometers for several time points
(2 pulses). Bars show mean and 1σ (black), 2σ (dark gray) and 3s (light gray). Bands show combined result.
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Figure 5: a) Posterior sample profiles (blue lines) determined from tanh parameterisation and others as in figure 3,
b) Marginal posterior PDF for pedestal width.
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