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1. INTRODUCTION

Momentum transport is an active area of research in many tokamaks due to the role of rotational

shear in turbulence suppression and global plasma confinement. However, at present it is not well

understood how plasma rotation profiles are affected by the operating conditions. A raw linear

scaling between global energy and momentum confinement has been observed in many devices

[1], including ASDEX [2], DIII-D [3] and JET [4], although the presence of a large scatter suggests

a difference in their local behaviour.

A major influence on the confinement in H-mode discharges is observed during Edge Localised

Modes (ELMs) in which the repetitive collapse of the pedestal causes an ejection of energetic

particles from the plasma. In this process, both kinetic energy and angular momentum can be lost.

In database analysis at JET [4] it has been observed that the rotation velocity is reduced with higher

ELM frequency. Furthermore, studies of ELM associated energy losses in multiple devices show

energy losses in the order of 5-20% [5-6]. However, the magnitude of the momentum losses are not

well known and might not necessarily be of

 similar magnitude. For the better understanding of the observed momentum confinement it is

important to investigate the momentum loss and the influence on the plasma rotation profiles.

In this paper the measured changes in plasma profiles of angular frequency (ω = vϕ/R), temperature

(Ti, Te) and density (ne) will be discussed in order to assess the momentum and thermal energy

losses. The confinement characteristics of several type-I ELMy H-modes are presented. The ELM

induced losses are estimated while taking the measurement capabilities into consideration, in order

to quantify the observed variations in confinement.

2. GLOBAL CONFINEMENT

From scaling laws, it is found that the energy confinement decreases with absorbed power

(~P-0.69, τIPB98(y,2)). Figure 1a shows the time evolution of an H-mode discharge (B = 1.6T, Ip =

1.6MA) with stepped Neutral Beam (NBI) power to vary the stored energy and momentum. The

NBI was stepped in three phases with Plow (4.5MW), Pmed (7.5MW) and Phigh (12MW). Steady-

state is obtained roughly 1s after each step during both Pmed and Phigh, with Plow still showing a

slight increase in density. Each phase is characterised by type-I ELMs with increasing frequency

(fELM) of approximately 15, 30 and 60+ Hz respectively. The increase in Dα radiation offset suggests

a slightly higher particle recycling at the plasma edge.

However, the edge line integrated density shows only minor variations and the effect is thus

assumed to be constant. In the early phases, total kinetic energy (Wth = ∫3/2k(niTi +neTe)dV) and

total angular momentum (Lϕ = ∫nimiRvϕdV) increase with injected power due to the coupling

between torque and power in NBI heating. Most interesting to notice is the reduction in Lϕ at Phigh,

which is a consequence of both a drop in core density and a large reduction in angular frequency

near the pedestal top (Rped~3.8m, r/a~0.92). This reduction in Lϕ results in a further decrease in

momentum confinement (τϕ) in comparison to the energy confinement (τE) although additional
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torque is applied. The global ratio of energy to momentum confinement (Rτ = τE/τϕ) thus changes

from 0.8±0.2 at Plow to 1.1±0.1 at Phigh (see Figure 1b).

Separating the confinement in core and edge components by determining the stored fractions in

the pedestal enclosed volume (as in [4,5]) shows that a large part of the ratio change is caused by the

pedestal region, Rτ,edge =1.80±0.37. The significant reduction in the tj,edge is consistent with the large

reduction in w near the pedestal top which, combined with the large elliptical volume, contributes

significantly to the total momentum. Additionally, a decrease in the edge thermal mach number, defined

as the ratio of fluid over thermal velocity (Mth = vϕ/√(eTi/m) is seen from 0.30 to 0.15 (see Figure 1c).

This is in agreement with the observation that the pedestal conditions play a major role in the global

confinement and, more evidently, suggests that τϕ does not scale as τE with increasing fELM.

3. ELM DYNAMICS AND MOMENTUM LOSS

An explanation for the change in Rt could be the change in ELM associated losses. ELM cycle

dynamics are characterised by a fast drop in pedestal pressure gradient (∆t = 0.1-0.2ms), followed

by a build up due to core transport until the critical gradient is reached and a successive ELM is

triggered [6]. Unfortunately, the 10ms integration time of the core Charge Exchange Recombination

Spectroscopy (CXRS) [7] system is too long to obtain time resolved information during the initial

ELM crash. Instead, for low frequency ELM cycles (fELM<30Hz) a separation between pre-ELM (-

15ms < t-tELM < -5ms) and post-ELM (5ms > t-tELM < 10ms) is made to estimate relative changes.

A consequence of this method however is the systematic underestimation of the absolute drop due

to the quick build up of the pedestal. In Figure 2a,b the averaged pre- and post-ELM profiles are

shown for w and Ti during a fixed input power H-mode discharge (B = 2.2T, Ip = 2.0MA) with type-

I ELMs at fELM ~ 20Hz. A clear drop in the angular frequency profile is observed from r/a~0.65

outwards while the ion temperature drop appears to be smaller and penetrates less deeply. Using a

coherent data sampling method [5], the time evolution of the ω and Ti profile can be obtained, as

shown in Figure 2d,e, together with ne from High Resolution Thompson Scattering (HRTS) and Te

from Electron Cyclotron Emission (ECE) measurements at approximately the same flux surface

position. From the time dynamics it seems that the build up of ω has not reached a stable value

before the next ELM. Notice the good agreement in magnitude and time evolution between Te and

Ti close to Rped. The HRTS and ECE measurements are selected in accordance to the CXRS time

resolution in order to have a direct comparison between all parameters. In Figure 3a, the radial drop

profile for all parameters are shown normalised to the pre-ELM profile. A consistently larger drop

in angular frequency (∆ω/ωpre = 35±4%) is observed relative to temperature (∆Te/Te,pre = 18±7%,

∆Ti/Ti,pre= 18±3%) and electron density (∆ne/ne,pre = 10±2%) near the pedestal top. Alternatively,

the ne drop profile determined by deconvolution of the line integration measurements [8] is in

agreement with the HRTS which improves the certainty on the derived density profile change.

The momentum and energy density profiles are calculated using the average pre- and post-ELM

profiles of all parameters. The ion density is estimated using a single impurity correction factor



3

from Brehmsstrahlung (Zeff ~ 1.5). The total loss of angular momentum (∆Lϕ) and energy (∆Wth) is

then determined by radial integration of the drop profile up to the last CXRS measurements with

R~Rped. The results for several H-mode discharges in which all diagnostics were available are

shown in Figure 3b. The momentum drop is consistently larger than the drop in thermal energy. For

the discharges presented in this section (black dots), the average ∆Lϕ/Lϕ is 9±1% in comparison to

∆Wth/Wth = 5±1%. Normalised to the pre-ELM pedestal stored values, this would be 22±3% and

16±5% respectively. The uncertainties are derived from the averaging method un these three pulses

under similar plasma conditions.

CONCLUSIONS AND DISCUSSION

The ELM induced loss in angular momentum was found to be consistently larger relative to the

thermal energy drop. The difference is mainly caused by the significant drop in angular frequency

compared to the temperature from r/a~0.65 outwards. With the large contribution of the pedestal to

the global confinement, the ELM losses contribute significantly to the change in confinement. The

increased momentum losses thus offer an explanation for the observed reduction in the average angular

frequency with increasing fELM. This would be especially important when the fELM is near the build

up time of the pedestal, resulting in a further lowering of momentum confinement time and a change

in confinement time ratio. For a better understanding of the plasma global confinement it is therefore

important to study the loss mechanisms and their relation to the pedestal conditions.
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Figure 1: (a) Waveforms of stepped power Pulse No: 73568 showing change in confinement with fELM, (b) Thermal
Mach number versus input power in plasma core (   ) and near the pedestal top (   ), (c) Confinement time ratio versus
input power separated for global (   ), edge (   ) and core (   ) region
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Figure 3: (a) ELM-averaged normalised drop profiles versus normalised minor radius. (b) Normalised total momentum
drop (∆L/Lϕ) versus normalised thermal energy (∆W/Wth) for several discharges at varying field, plasma current and
applied NB heating. Notice all values show a larger momentum drop by a factor ~1.6.

Figure 2: (a) ELM-averaged angular frequency profile at pre-ELM (   ) and post-ELM (   ), average pre-ELM electron
density from HRTS (   ) is shown to indicating the pedestal location. (b) ion and electron temperature (c) Evolution of
Dα relative to the ELM onset using coherent data sorting for Ti (CXRS, 10ms), Te (ECE, sampled at 100Hz), ω (CXRS,
10ms) and ne (HRTS, 20Hz). The last CXRS measurement point is shown with its position used to select the closest
channel of the HRTS and ECE signals. Data points within ±5ms around tELM are excluded from the analysis to
prevent overlap between pre- and post-ELM profiles
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