

EFDA-JET-CP(09)05/04

Y. Baranov, K. Kirov, M. Goniche, J. Mailloux, M.-L. Mayoral, J. Ongena, F. Nave and JET EFDA contributors

# LH Power Modulation Experiment on JET

"This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

"Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards.

## LH Power Modulation Experiment on JET

Y. Baranov<sup>1</sup>, K. Kirov<sup>1</sup>, M. Goniche<sup>2</sup>, J. Mailloux<sup>1</sup>, M.-L. Mayoral<sup>1</sup>, J. Ongena<sup>3</sup>, F. Nave<sup>1</sup> and JET EFDA contributors\*

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

 <sup>2</sup>EURATOM-UKAEA Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
<sup>2</sup>CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
<sup>3</sup>Association EURATOM-Belgian State, Koninklijke Militaire School - Ecole Royale Militaire, B-1000 Brussels Belgium
\* See annex of F. Romanelli et al, "Overview of JET Results", (Proc. 22<sup>nd</sup> IAEA Fusion Energy Conference, Geneva, Switzerland (2008)).

Preprint of Paper to be submitted for publication in Proceedings of the 18th Topical Conference on Radio Frequency Power in Plasmas, Gent, Belgium. (22nd June 2009 - 24th June 2009)

#### ABSTRACT.

LH power modulation was recently used at JET to quantify experimentally the LH current drive efficiency and power deposition. A new approach was applied for the analysis of the amplitude and phase of electron temperature  $T_e$  perturbations  $\delta T_e(k\omega_o)$  at different harmonics k of the modulation frequency wo. A solution of the Fokker-Planck equation combined with heat transport modelling was used to study the dependence of the ratio of the perturbation of different harmonics k and n,  $\delta T_e(k\omega_o) / \delta T_e(n\omega_o)$ , and the phase shift of the harmonics  $\delta \phi(k\omega_o)$  on the plasma parameters and electron distribution function plateau width, which is directly connected to the current drive efficiency. The results of the modelling were compared with the experimental data to estimate the current drive efficiency. In addition, LH power deposition profiles were deduced from the radial dependence of  $\delta \phi(\omega_o)$ . The maximum of the LH power deposition becomes more peripheral and with a reduced current drive efficiency at higher densities. In H-Mode plasmas, at pedestal densities above the LH accessibility limit, a large fraction of the power is absorbed beyond the separatrix. Finally, the experimental power deposition profiles are more peripheral than the calculated ones obtained from combined ray tracing and Fokker-Planck Plank modelling. The experimental results indicate that the LH power spectrum in the plasma is modified, with more power in the high N<sub>ll</sub> components.

#### 1. EXPERIMENTAL OBSERVATIONS

LH waves at 3.7GHz were launched in JET L- and H-Mode plasmas at lineaveraged densities between  $10^{19} \text{ m}^{-3}$  and  $3.5 \times 10^{19} \text{ m}^{-3}$  at  $B_t = 2.2, 2.7, 3.4T$ . Peak electron density varied in these experiments between 1 and  $5 \times 10^{19} \text{ m}^{-3}$ . The LH power was square modulated (modulation depth between 70 and 90%) at a modulation frequency  $\omega_o/(2\pi) \approx 42$ Hz. The launched spectrum of the LH waves has a maximumat  $N_{\parallel} = 1.84$  for 0o antenna phasing. The electron temperature profile  $T_e(r)$ was measured with the ECE diagnostic in the region of large optical depth  $\tau > 1$ . Figure 1 shows the modulated LH power, the time variation of  $T_e$  at different radii, the phase shift between the electron temperature and modulated LH power  $\delta \phi (\omega_o) = \phi (T_e (\omega_o)) - \phi (P_{lh} (\omega_o))$ , the normalized amplitude of the first harmonic A  $(\omega_o) = \delta T_e (\omega_o)/\delta P_{lh} (\omega_o)$ , where  $\delta P_{lh} (\omega_o)$  the amplitude of  $P_{lh}$ variation and  $T_e(r)$  and  $n_e(r)$  profiles. The effect of suprathermal emission was estimated [1] as relatively small for a moderate to high density plasmas above  $1.5 \times 10^{19} \text{ m}^{-3}$ . Its contribution becomes considerable in at the plasma periphery, where the optical depth  $\tau < 1$ , as shown in Fig.1e for R>3.7m. The calculation of  $\delta \phi (\omega_o)$  and A  $(\omega_o)$  is not valid in this region.

The maximum of the power deposition profile correlates with the maximum of the profile of  $\delta\phi$  ( $\omega_0$ ). Heat transport modelling with TRANSP and JETTO shows [2] that the LH power deposition profile is peaked in the vicinity of max ( $\delta\phi$  ( $\omega_0$ )) with a small possible shift (a few cm) towards the plasma core. The maximum is broad with a half width of the order of half the minor radius. Figure 2 shows the location of max ( $\delta\phi$  ( $\omega_0$ )) for a series of pulses at different magnetic fields and densities.

#### 2. ANALYSIS OF THE DATA

A new approach has been proposed in this work to deduce the current drive efficiency by analysing the spectral characteristics of the phase  $\delta \phi$  (k $\omega_o$ ) and the amplitude  $\delta T_e$  ( $3\omega_o$ ),  $\delta T_e$  ( $\omega_o$ ) of  $T_e$ perturbations. when using modulated LH power. Transport analysis showed that in the case of pure heat transport the maximum phase delay of the first harmonic max ( $\delta \phi_{tr} (\omega_o)$ ) should vary between  $-\pi/2$  for  $\chi_e \rightarrow 0$  and  $-\pi/4$  for  $\chi_e \rightarrow 0$  [3]. For the  $\chi_e$  values found in these experiments we find, again assuming pure heat transport that max ( $\delta \phi_{tr} (k\omega_o)$ ) should change from -0.9 in case of low density  $\bar{n}_e \approx 10^{19} \text{ m}^{-3}$  to -1.3 for high  $\bar{n}_e \approx 3 \times 10^{19} \text{ m}^{-3}$  [3]. The measured max ( $\delta \phi_{tr} (\omega_o)$ ) = -1.3at high density  $\bar{n}_e \approx 13 \times 10^{19} \text{ m}^{-3}$  [2]. In the example shown in Fig.1(c) we find however max ( $\delta \phi_{tr} (\omega_o)$ ) the fact that the launched LH waves interact primarily with fast electrons. These electrons transfer power to the bulk electrons with some delay  $\tau \propto (1/v_e) (V/V_{th})^3$  increasing with the velocity of the electrons V, where e v is the collisional frequency of the thermal electrons.

Figure 3 shows time variation of the absorbed LH power, collisional power transferred from the fast tail electrons to the bulk and generated current as deduced from a solution of the 2D relativistic Fokker- Plank equation [4]. A dependence of the phase delay between the first harmonic of the collisional and applied power  $\Delta \varphi = (P_{col}(\omega_o)) - \varphi(P_{lh}(\omega_o))$  and the ratio of the amplitudes of the third and the first harmonic of the collisional power  $\delta P_{col}(3\omega_o)/\delta P_{col}(\omega_o)$  are shown in Table 1. The measured  $T_e$  perturbations are caused by  $\delta P_{col}(k\omega_o)$ , which in turn depends on the input LH power  $P_{lh}$  and the width of the plateau in the electron velocity distribution (localized between the lower value V1 and upper value V2 in units of V/V<sub>th</sub>) as demonstrated in Figure 4 and Table 1.

Figure 4 shows the ratio  $\delta P_{col} (3\omega_o)/\delta P_{col} (\omega_o) = G \,\delta T_e (3\omega_o)/\delta T_e (\omega_o)$  and  $\Delta \phi$  deduced from the measurements at  $R = R(\max(\delta \phi(\omega_o)))$  and from the modelling. Solid symbols correspond to  $\Delta \phi = \phi$   $(P_{col}(\omega_o)) - \phi(P_{lh}(\omega_o))$  deduced from 2D relativistic Fokker-Planck modelling assuming that V1 = 3 and V2 =  $[c/(N_{\parallel acc}*V_{th})]$ , with  $N_{\parallel acc}$  defined by the local accessibility condition at the peak of the power deposition profile. The open symbols show  $\delta \phi(\omega_o) = \phi (T_e(\omega_o) - \phi (P_{lh}(\omega_o) - \delta \phi_{tr}(\omega_o))$  where  $\delta \phi_{tr} (\omega_o)$  and G are derived from TRANSP and JETTO modelling. The upper limit for  $\delta \phi_{tr} (\omega_o) = -0.9$  and G=3.1 and the lower limits are -1.3 and 2.6, respectively. The triangles show the upper limit for the experimental  $\delta \phi(\omega_o)$  and  $\delta P_{col}(3\omega_o)/\delta P_{col}(\omega_o)$  and the squares show the lower limit. The result of the modelling at low density is within the range of the measured  $\delta P_{col}(3\omega_o)/\delta P_{col} (\omega_o)$  and  $\delta \phi(\omega_o)$ . At higher ne the measured values are well above the modelled ones and the discrepancy increases with increasing density. Solid green circles represent results of the Fokker-Planck Plank modelling for different values of V2 as shown in the graphs. At high density best agreement is reached at the lowest V2, which corresponds to the lowest current drive efficiency.

Standard Ray-tracing [5] and Fokker Planck modelling done for a number of experimental pulses shows that the modelled power deposition profile is shifted to the plasma core with respect to the measured power deposition profile.

### CONCLUSIONS

LH Power deposition profiles were deuced by analyzing the spectral characteristic of  $T_e$  perturbations using LH power modulation. The peak of the profiles moves towards the periphery and current drive efficiency decreases when density increases as deduced from the transport and 2D relativistic Fokker-Plank modelling of the experiment. Power absorbed in the plasma becomes small when pedestal density reaches the accessibility limit. A standard ray-tracing and Fokker-Plank modelling predict more central profiles and higher current drive efficiency than found in the experiment.

## ACKNOWLEDGEMENT

This work was funded partly by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was carried out within the framework of the European Fusion Development Agreement.

## REFERENCES

- [1]. C. Sozzi et al, "Studies on LH-generated fast electron tail using the oblique ECE diagnostic at JET". this conf.
- [2]. K.Kirov et al, "LH Wave Absorption and Current Drive Studies by Application of Modulated LHCD at JET". 36th EPS Conference on Plasma Physics, Sofia, Bulgaria. 2009
- [3]. F.Leuterer et al, Nucl.Fusion 43, 744 (2003)
- [4]. M.Shoucri, I.Shkarofsky, Comp.Phys.Comm. 82,287(1994)
- [5]. Yu.F.Baranov et al Nucl.Fusion **36**, 1036 (1996)

| V2                                                    | 15    | 10    | 7     | 5     |
|-------------------------------------------------------|-------|-------|-------|-------|
| $\Delta \phi$                                         | -0.86 | -0.55 | -0.28 | -0.14 |
| $\delta P_{col}(3\omega_o)/\delta P_{col}(3\omega_o)$ | 0.18  | 0.22  | 0.28  | 0.32  |
| J/P (v <sub>e <math>\sqrt{mT_e}/e</math></sub>        | 81.5  | 35    | 21    | 15.2  |

Table 1: Results of 2D relativistic Fokker-Plank modelling for Pulse No: 77609.



Figure 1: (a)  $T_e$  perturbations at different radii caused by (b) modulated LH power. (c) The phase shift  $\delta\phi(\omega_o) = \phi$   $(T_e(\omega_o)) - \phi(P_{lh}(\omega_o))$  and (d) normalized amplitude  $A(\omega_o)$  (e)  $T_e$  and (f)  $n_e$  profiles.



Figure 2: Position of  $max(\delta\phi(\omega_o))$  versus line averaged density. Peak of the power deposition located near max( $\delta\phi(\omega_o)$  moves to the plasma boundary with density increase. There is no significant difference between pulses at different B.  $T_e$  in the pulses varied in the region of  $max(\delta\phi(\omega_o))$  in the range of  $0.6 < T_e < 2.$  keV, which may explain the vertical scattering of the points.

Figure 3: Absorbed LH and collisional power variation during one period of the modulation in Pulse No: 77609,  $T_e = 0.8 \text{keV}$ ,  $n_e = 2.2 \times 10^{19} \text{ m}^{-3}$  at  $R=3.63\text{m}=R(\max(\delta\phi(\omega_0) \text{ and } \tau_n = 2\pi v_e/w_0 = 3350$ . Dependence on the max $(D_{ql})$  is relatively weak. The normalized electric field in all cases was small  $0.001 < E_n = eE/(m v_e V_{th}) < 0.003$ and did not affect visibly the results. The spectral characteristics of the collisional power depend mainly on the maximum 'plateau' velocity V2. Dependence on V1 is weak. It is typically close to 3.



Figure 4: Measured (open symbols) and calculated (solid symbols)  $A(3\omega_0)/A(\omega_0)$  and  $\Delta \varphi$  as functions of  $n_e$ . Open triangles are the upper and open squares and diamonds are lower limits of the measured functions.