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ABSTRACT.

Nowadays, processing all information of a fusion database is a much more important issue than

acquiring more data. Although typically fusion devices produce tens of thousands of discharges,

specialized databases for physics studies are normally limited to a few tens of shots. This is due to

the fact that these databases are almost always generated manually, which is a very time consuming

and unreliable activity. The development of automatic methods to create specialized databases

ensures first, the reduction of human efforts to identify and locate physical events, second, the

standardization of criteria (reducing the vulnerability to human errors) and, third, the improvement

of statistical relevance. Classification and regression techniques have been used for these purposes.

The objective has been the automatic recognition of physical events (that can appear in a random

and/or infrequent way) in waveforms and video-movies. Results are shown for the JET database.

1. INTRODUCTION

This article reviews recent developments in classification and regression techniques for the automatic

generation of specialized databases of physical events. These methods have been used to determine

the precise time instants in which events happen.

Physical systems can evolve in such a way that different states can occur in different time intervals.

The exact recognition of the system state at each time instant can be essential not only for the

interpretation of the physics but also for control purposes. Automatic classification systems can be

used to follow the temporal evolution of physical systems and to determine the transition times

between different states.

Thermonuclear plasmas show two different confinement regimes: Low mode (L-mode) and

High mode (H-mode). Section 3 is devoted to the automatic determination of transition times between

these confinement regimes in JET. Results of a previous work are reviewed and new requirements

in terms of computing performance are also emphasized.

Long pulse fusion devices such as W7X or ITER will have databases with an extremely large

number of signals and very long records. Off-line analysis under these conditions requires automatic

mechanisms to search for relevant data.

With regard to this, two facts should be highlighted. On the one hand, some plasma events can

appear very frequently, but on non-periodic basis, and they have to be located with accuracy for

physical studies. Nowadays, this happens for example with Edge Localized Modes (ELMs). On the

other hand, a first screening of very long records should provide signal intervals with potential interesting

events in order to discard irrelevant time segments. Both of these requirements can be tackled with

regression estimations based on SVM. This is an innovative method that is summarized in section 4.

New results are presented about, first, the automatic exact location of ELMs in the JET database and,

second, about the automatic identification of interesting time intervals in video-movies.

All computations have been performed with Matlab and, in particular, the SVM implementation

has been ‘The Spider’ software, which is included in public licensed environments for Matlab [1].
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2. SPECIALIZED DATABASES IN FUSION

Most of the diagnostics in fusion are devoted to following the temporal evolution of quantities. The

analysis of physical events (for example sawteeth activity, ELMs, internal transport barriers or

disruptions) requires the development of specialized large databases around their time instants. This

is an essential step to provide analyses of the physical phenomena with adequate statistical significance.

However, the fusion community suffers from a chronic data analysis issue: only a very limited

part of the collected information is properly analyzed. The reason for this is the way in which

specialized databases are generated. Typically, the exact temporal location of events is accomplished

through the visual inspection of the data. This manual process is very time consuming, mainly for

physical phenomena that occur at random or infrequently.

In general, events are recognized by representative signatures (patterns) in the signals. These

footprints are characterized by local information either in the time domain or in the frequency

domain or in both. With the typical manual procedures, determining accurate time instants can be a

difficult task due to several factors. First, the event recognition can require the identification of

patterns in noisy data. Second, the signature can present a not perfectly-defined temporal location.

Third, specific signal pre-processing can be needed for the temporal location of patterns that are

only apparent in the frequency domain (for instance, some MHD phenomena). Fourth, image

diagnostics (infrared and visible cameras) are becoming very popular systems, but under long pulse

conditions, the location of events through video-movies visualization by human operators is

completely unfeasible. Fifth, some physical behaviours can only be detected by means of the

simultaneous presence of typical structural forms in different signals (both waveforms and video-

films). Sixth, an important issue in the last case can be the diverse sampling frequencies of several

signals to determine an individual time instant.

Therefore, for next fusion devices (W7X or ITER) and also for present machines, automatic

methods of data analysis are required. In this sense, an initial step can be the automatic location of

physical events and the automatic identification of signal intervals with potential relevant data.

The automatic character of these techniques provides clear benefits. On the one hand, practically

all the information inside the databases can be used, thereby improving the statistical relevance. On

the other hand, the automatic procedures allow a drastic reduction of human efforts in the identification

and location of physical behaviours. Finally, a very important goal can be achieved: the search of

events can be standardized. This implies that the recognition criteria can be established and implemented

by computational means. The consequence is a more objective search mechanisms and less vulnerability

to human judgements (missing occurrences, subjective assessments or location errors).

3. CLASSIFICATION TECHNIQUES: L-H TRANSITIONS IN JET

In the general formulation of the classification problem, an input sample (or feature vector) x = (x1,

x2, …, xd) needs to be classified to one (and only one) of J groups (or classes) C1, C2, …, CJ. To this

end, a decision rule is used [2].
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A first work on the use of classification systems to determine L-H transition times in JET is [3]. In

this work, a set of 50 discharges as training/test datasets between Pulse No’s: 52211 and 62723 is

considered. The transition times have been established by experts with a high degree of confidence

[4]. The feature vectors are made up of six components. To characterize the L to H transition, six

waveforms are used: the coordinates of the X-point, the beta normalized with respect to the

diamagnetic energy, the total heating power, the magneto-hydrodynamic energy and the axial toroidal

magnetic field at a Ψ = 0.8 surface. For the H to L transition the last three signals are replaced by

the toroidal magnetic field, the safety factor and the time derivative of the diamagnetic energy. The

training process has been performed with 6600 and 6000 feature vectors (at sampling periods of 10

ms) for the L-H and H-L transitions respectively.

For a proper transition time evaluation, it is important that the classification system reaches high

success rates in discriminating between the two confinement regimes. In this respect, in the reference

[3] a combination of classifiers has been shown to significantly increase the success rates obtained

with single classifiers [5]. In particular, a combination of a SVM classifier with a Bayes classifier

has been developed in [3] as explained in the following.

3.1 SVM CLASSIFIER

The SVM classifier calculates a separating hyper-plane as a decision rule [2] to discriminate between

the two classes of confinement regimes: CL (L-mode) and CH (H-mode). Given a feature vector   at

a time instant, the classifier estimates not only the class of x but also the distance to the separating

hyper-plane. The larger the distance the more reliable is the classification. Then, it is possible to

assign a probability to the classification result through a sigmoid function. Therefore, the probability

with the SVM classifier that the plasma is in L mode is:

where  |D(x)| is the distance to the hyperplane and the sign of D(x) distinguishes between L mode

or H mode (+1, -1 respectively). The coefficient k is determined empirically. Obviously, the

probability that the plasma is in the H regime is PSH = 1 - PSL.

3.2 BAYES CLASSIFIER

Given the classification task of J classes and an unknown pattern x, the Bayes rule states

In words, the Bayes formula gives the posterior probability that the unknown pattern belongs to the

respective class Cj, given that the corresponding feature vector takes the value x. The probability

distribution function (pdf) p (x|Ci ) is the likelihood function of Cj with respect to x. P (Ci ) is the a

1
1 + exp [-kD(x)]

PSL =

P (x | Cj ) P (Cj )

p (x)
P (Cj | x) =
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priori probability of class Cj and p (x) is the pdf of x given by

In order to apply the Bayes rule, the likelihood and the prior probability of each class must be

known. The likelihood can be estimated via the non-parametric Parzen window estimator [6]. The

particular details on the specific implementation to the JET database are discussed in detail in [3].

Concerning the prior probability and taking into account that the plasma is either in L mode or H

mode, it is possible to assume a value of P (Ci ) = 0.5 for both cases.

3.3 COMBINED CLASSIFIER

The fusion of the previous classifiers is carried out by means of a fuzzy aggregation operator [7]. In

particular, we have chosen the Einstein sum that for the case of the H mode is given by:

The final decision of this hybrid classifier is based on the value of SH: if SH ≥ 0.5, the plasma is in

H mode. Otherwise, the plasma is in L mode.

The combination of classifiers gives success rates of 99.22% for L to H transition and 96.31%

for the H to L case.

Figure 1 shows an example of the time estimate that corresponds to a transition from the L to H

regime in JET. Feature vectors are taken with a period of 10ms. The vertical green line (at time

instant 13.39s) represents the transition time determined by the experts. The horizontal straight line

with value 0.5 shows the threshold value to discern between L and H mode. The continuous line is

the temporal evolution of the Einstein sum operator. The intersection of this line with the horizontal

straight line defines the transition time. Points at values +1/-1 indicate plasma in L and H mode

respectively. The transition is estimated to occur at 13.41 ± 0.01s by the combined classifier. The

difference between the time determined by experts and the time deduced by the combined classifier

is (in absolute value) 0.02s. Similar results are shown in [3] for the H-L transition.

3.4 REMARKS ON THE CLASSIFIER

With a reduced number of discharges, a classifier with enough generalization capability can be

developed. However, the temporal resolution of the transition is limited by the sampling period of

the feature vectors (10ms in the present case). In order to increase the resolution, let’s say up to

1ms, the training process would need to multiply the number of input samples by a factor of 10.

Computational times for the training process rise exponentially with the number of feature vectors.

For example, to obtain the SVM model, the optimization problem to solve can take 60-90 minutes

with 6000 samples in a PC with Matlab. In case of 60000 feature vectors, computing times can be

Σ
j

j=1

p (x) =      p (x | Cj ) P (Cj)

PSH + P (CH |x)

1 + PSH P (CH |x)
SH | x) =
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of the order of 70 hours in the same PC. This means that parallelization techniques can be extremely

beneficial not only to increase the resolution times but also to augment the number of training

discharges to achieve higher generalization capabilities [8].

4. REGRESSION TECHNIQUES: AUTOMATIC LOCATION OF EVENTS IN JET

Reference [9] describes an innovative technique (UMEL, Universal Multi-Event Locator) to

automatically locate both singular events and slices of potential interest in any kind of signals

(waveforms, images or, in general, multivariate signals with arbitrary number of dimensions).

UMEL is based on SVM regressions. Let us consider S training samples (x1,y1),..., (xS,yS), (xi ∈ RRn

and yi = f (xi) where f :RR
n → RR). The regression function is given by [2]

(1)

The parameters γk, k = 1,...,S are determined using the solution of the following quadratic optimization

problem:

where the parameters αk, βk, k = 1,...,Sare determined by maximizing the functional

subject to the constraints

given the training data (xk, yk), k = 1,...S, an inner product kernel H, an insensitive zone e, and a

regularization parameter C.

Only a subset of the parameters  γk in (1) Reference source not found. is nonzero. The data points

xk associated with the nonzero γk are called support vectors.

Different combinations of kernels, e-values and regularization parameter allow determining

several degrees of smoothing in the regression estimation. The insensitive zone e provides the

required level of accuracy to approximate a function f (x) by another function f * (x) such that the

function f  (x) is situated in the e-tube of f * (x). The axis of the tube defines an e-approximation f *

(x) of the function f  (x) (figure 2).

The choice of SVM as regressor is not only related to the robust character of its estimates, even

when only sparse data is available, but also to the possibility of providing a particular interpretation

to the support vectors. UMEL assumes that, in general, some of the support vectors of a regression

*

**

*

*

γk = αk - βk,  k = 1,..., S∗ ∗ ∗

f ∗ (x) =     γk H (xk, x)Σ
S

k=1

∗

Q (α, β) = -e      (αk + βk) +      yk (αk - βk) -       (αk - βk) (αl - βl)  H (xk - xl) 
1
2Σ

S S S

k=1 k=1
Σ

k,l=1
Σ

αk =      βk,  0  αk       , 0  βk       ,   k = 1,...S
C

S

C

SΣ
S S

k=1 k=1
Σ
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represent the most difficult samples to regress and their coordinates in the input domain determine

the exact location of special signatures in the signal.

Figure 3 shows a step function corrupted with pink noise and regressed with SVM. Some support

vectors are located inside the smooth e-tube (ISV or internal support vectors) but others lay outside

(ESV or external support vectors). Samples that become ESV are always on or outside the e-bounds

and show special signatures, in this case a discontinuity.

Typically, in plasma physics, physical events are recognized by particular structural forms in the

signals (patterns) such as spikes, transients or gradients. These patterns are signatures well located

in the signals and can appear in waveforms or images. UMEL recognizes any kind of singular event

through the external support vectors.

A new development with UMEL is the location of ELMs with temporal evolution signals of the

JET database. ELMs are recognized by simultaneous abrupt changes in the temporal evolution of

the Dα emission, the line integrated electron density through the plasma edge and the stored

diamagnetic energy. UMEL determines the time instants of these singular footprints by means of

the ESV (figure 4). A simultaneous occurrence of ESV in all signals is considered to be an indicator

of the occurrence of an ELM.

It should be emphasized that exactly the same software is used to get the estimation regressions

of any signals, irrespective of its magnitude, structural form and noise level. The only differences

in the various versions of the algorithm are the regression parameters (regularization parameter,

e-value and kernel parameter).

As an example of applications aimed at identifying time intervals of potential interest, the analysis

of videos acquired by JET ultra high speed visible camera is presented in the following.

This camera can collect hundreds of kframes/s to analyse fast events. Some examples of the

phenomena to be investigated with this diagnostic are plasma interactions with the in-vessel

components, striations, filamentary structures and blobs in the plasma edge.

Each individual frame of a movie can be seen as a two-dimensional function  where x and y are

spatial coordinates and the amplitude of f at any point of coordinates f (x, y) is the intensity or gray

level of the image at that point (or pixel). Many of the aforementioned physical events produce

peaked values of   over specific pixels. These peaks induce gradients in  f (x, y) and the gradients

can be recognized by UMEL through the presence of ESV.

Variations in the number of ESV between consecutive frames denote the presence of images

with different structural forms. This indicates that the plasma emission is changing and, therefore,

this reflects how the plasma evolves in time.

Figure 5 shows the number of ESV versus the frame number in Pulse No: 69787 of JET. This has

been calculated by applying UMEL image by image to the video-movie. The peaks with extreme

number of ESV indicate singular points in the plasma evolution. They are exactly determined with

a new application of UMEL to the waveform that represents the evolution of the number of ESV.

The locations provided by UMEL are represented by red circles.
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Figure 1: Automatic determination of the transition time
with the combined classifier.

Figure 2: The solid line is the axis of the tube and defines
the regression estimation.

Figure 3: The dashed lines are the e-tube bounds and the
plain line is the regression estimation.

Figure 4: The ELM is located at the time instant when
the diamagnetic energy drops. Signals from top to bottom
are: Dα, line integrated electron density and stored
diamagnetic energy.
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Figure 5: Time evolution of the ESV number for JET Pulse No: 69787.
The frames with an extreme variation in the number of ESV are shown in red.
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