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ABSTRACT.

In learning machines, the larger is the training dataset the better model can be obtained. Therefore,

the training phase can be very demanding in terms of computational time in mono-processor

computers. To overcome this difficulty, codes should be parallelized. This article describes two

general purpose parallelization techniques of a classification system based on Support Vector

Machines (SVM). Both of them have been applied to the recognition of the L-H confinement

regime in JET. This has allowed reducing the training computation time from 70h to 3m.

1. INTRODUCTION

Due to the large amount of experimental data at JET, data mining tools are being considered for

massive analysis. Currently, classification techniques based on support vector machines are providing

remarkable results in several problems such as data-driven theory [1] and automatic determination of

transition points [2]. Typically, the greater the training dataset the better generalization capability can

be achieved. However, by increasing the number of training samples, the computation time to train

the system rises in a non-linear way. From the computational point of view, this fact can render that

the problem is intractable in single processor computers. The motivation of the present work has been

the implementation of parallel algorithms for classification techniques based on SVM.

This paper contains 5 sections. Section 2 gives a brief introduction to SVM. Section 3 describes

the two parallel algorithms that have been used in this article: Cascade-svm and Spread-svm. Also,

the changes done in the LIBSVM [3] library code to implement these algorithms are outlined.

Section 4 presents results regarding the L-H confinement regime in JET. Finally, in section 5, some

conclusions are drawn.

2.  SUPPORT VECTOR MACHINES

Support vector machines [4] are powerful classification and regression tools, but the computational

requirements grow very rapidly with the increase in the number of input data.

In this work, binary classifiers based on SVM have been developed, where the two classes are

separated by a hyperplane. The decision function that defines this hyperplane is the following:

(1)

The parameters αi, i = 1,..., n are the solution of the following quadratic optimization problem (QP-

problem). Maximize the function:

           (2)

subject to these constraints

f (x) =       αi yi K(xi, x) + bΣ
n

i=1

1
2

L (α) = -            αi αj yi yj K(xi, xj) +      αiΣ
n

i=1
Σ
n

i=1
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where (xi, yi), i=1,...,n are training data, xi∈ R
n, yi ∈{-1,1}, K is a kernel function and C is a

regularization parameter. The kernel function transforms the input data to a higher dimensional

space to find the hyperplane that separates the two classes with the maximum margin. There are

different kernel types: linear, polynomial or Radial Basis Function (RBF). In this article, only the

RBF kernel has been used (Equation 3)

                                      (3)

Only a reduced number of the αi parameters is non-zero. These are called support vectors and

determine the equation of the hyperplane. Obtaining a solution for Equation 1 requires solving the

QP-problem of Equation 2. To do this, heavy computational resources can be needed, depending on

the number of input data, n.

3. PARALLEL ALGORITHMS

Increasing execution speed through parallelization is difficult due to dependencies between the

steps which solve the optimization of the above equation. We have used two algorithms to increase

the speed of the SVM algorithms.

3.1 CASCADE-SVM

In Cascade-SVM [5], we split data into smaller subsets and assign each of these subsets to different

processors to obtain the support vectors. In this way, we eliminate the points that are not support

vectors in a first phase, saving a large amount of memory and processing time.

As shown in Figure 1, the results of each machine are combined two by two and moved into a

new process to obtain the new support vectors. The process continues until only a subset of support

vectors is obtained. This process is repeated until a solution is reached; this occurs when the support

vectors that have entered into first level are the same as those emerging from the last stage. In [5] it

is proved that this process converges in a finite number of steps, although a single pass also produces

good results, so we have chosen this alternative.

3.2 SPREAD-SVM

 Typically in a SVM problem, the optimization process spends about 95% of the computational

time to process the kernel matrix to map data into a higher dimensional space. Spread-SVM [6] is

focused on parallelizing the kernel matrix, of dimension nxn, where n is the number of input data.

The parallelization process distributes the computations among the number of available processors.

According to the Spread-svm method, the QP-problem is tackled in an iterative way. In each

iteration, the individual processors solve the optimization problem with different elements of the

K (x, y) = e-γ||x-y||
2

αi yi = 0,     0  αi  C/n     i = 1,....,nΣ
n

i=1
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kernel matrix (Figure 2).

Spread-svm is based on the Sequential Minimal Optimization (SMO) algorithm [6]. SMO breaks

a large QP-problem into a series of smallest possible QP-problems. These small QP-problems are

solved analytically, which avoids using a time-consuming numerical QP optimization as an inner

loop. The individual results are combined with a two by two process communication up to reach a

global solution of the iteration. This global solution is sent to all processors to start a new iteration

as shown in figure 3. The algorithm continues until a stop condition is met [6].

3.3 CHANGES IN LIBSVM

LIBSVM is a library that allows to solve problems with SVM and it has been the tool used to

implement the above two techniques.

In the case of Cascade-SVM, we have split the dataset into smaller disjoint subsets without

making any modifications to LIBSVM code. Results are integrated according to figure 1 and the

process is finished at the bottom level. The resulting set of support vectors defines the separating

hyper-plane.

In Spread-SVM, the optimization routine code provided with LIBSVM has been modified. The

loop that computes the kernel matrix is distributed among several processors by means of MPI [7]

communication calls. In this way, local optimizations are obtained with the aim of achieving a

global solution in each iteration. This procedure greatly reduces the computational times and offers

a high scalability with the number of processors.

4. EXPERIMENTAL RESULTS

To test the performance of both techniques, a test file of the United States Department of Forest has

been used. It contains 580000 input vectors with 64 features for each input. Executions of these

tests have been performed on the Lince cluster at CIEMAT. It is made up of nodes Xeon 3.2GHz

with 2GB of RAM and a low-latency Infiniband network.

As shown in Figure 4, the scalability is very poor for the Cascade-svm method, as the evolution

with the number of processors is far from the linear speed-up. However, Spread-svm has a very

good scalability and, therefore, Spread-svm has been chosen for the example about the L-H

confinement regime in JET.

Determining the confinement regime in fusion devices (L-mode or H-mode) can be important

not only for the physics but also for control purposes. The specific application of this article is

focused on the transition from L-mode to H-mode. The feature vectors are made up of temporal

evolution samples of 5 signals: the coordinates of the X-point, the beta normalized with respect to

the diamagnetic energy, the total heating power and the magneto-hydrodynamic energy. Therefore,

each feature vector has 5 components of synchronous samples. The sampling period is 2ms.

Fifty six JET discharges (in the range 70028-72456) have been used. All of these discharges

show a very clear transition time. Fifty of them (randomly selected) were chosen to train the SVM
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classifier and the remaining ones have been used for test purposes. The training was carried out in

a symmetric interval of radius 2.7s around the transition, which means a total of 135000 input data.

Execution results of Spread-svm on the Lince cluster are shown in Table 1 and are plotted in

Figure 5. It should be noted that the algorithm performance declines over four processors because

there are relatively few input data (135000 with only five features).

Therefore, the time needed for calculating the local maximum in each step is lesser than the time

spent in inter-processor communications. The Spread-svm algorithm requires at least 500K of data

to maintain a good level of scalability as prove in [6].

The parameters used with a RBF kernel (Equation 3) appear in Table 2, where the success rate

with the test dataset can reach 99.79%.

CONCLUSIONS

The Spread-svm algorithm provides a large scalability and has been applied to train classification

systems of L-H transitions. Typically, the bottle neck in relation to computational times appears in

the training process. Each individual case that appears in table 2 takes about 70h in a mono-processor

personal computer with only 27000 training samples. With Spread-svm, times are reduced to 3m in

the Lince cluster and 135000 training samples. Therefore, more discharges at higher sampling rates

can be used to achieve high generalization capabilities in the training process.
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  Processors Time (seconds)

 1 494

 2 368

 4 204

 8 187

16 219

32 277

Table 1: Spread times of SVM for L-H transitions.

C   Gamma (γ)    Success (%)

 30000 0.5 89.46

 60000 0.5 98.19

 90000   1 99.79

 90000 0.5 98.09

120000   1 98.05

Table 2: Success rates in classification for different combinations of the C and gamma parameters.
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Figure 1: Schematic of a binary Cascade-svm architecture.

Figure 2:  Spreads-svm data processing distribution with 8 processors.
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Figure 3: Process communication with 8 processors. Figure 4: Speed-up comparative.

Figure 5: Spread-svm time evolution for L-H transitions.
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