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ABSTRACT.

A conceptual design for the upgrade of the JET Tangential Gamma-Ray Spectrometer (TGRS) has

been carried out. The main design target for the TGRS upgrade is to maximize the signal-to

background ratio at the spectrometer detector, the ratio being defined in terms of the plasma emitted

gamma radiation and the gamma-ray background. A complex system of collimators and shields for

both the neutron and gamma radiations define the spectrometer field of view. Two tandem collimators

determine the field of view through the tokamak plasma. The entrance aperture to the penetration in

the JET Torus Hall south wall is defined by a neutron shield. Two gamma-ray shields together with

the existing concrete collimatordetermine the field of view at the Bismuth Germanate (BGO) gamma-

ray detector. One of the gamma-ray shields (with an embedded neutron attenuator) can be remotely

moved in and out of the detector line of sight thus providing flexibility in definition of the neutron

and gamma-ray fields at the BGO detector. Neutron attenuators using Lithium Hydride (LiH) with

natural isotopic composition (that meets the requirements for gamma-ray transparency) could provide

the necessary attenuation factors (approximately 104 for the 2.45MeV neutrons and 102 for the

14.1MeV neutrons). A hot pressing technology has been proposed for the construction of the lithium

hydride attenuators. The performance of a simplified geometry TGRS has been evaluated by

preliminary neutron and photon transport calculations and the results show that the design parameters

could be attained.

1. INTRODUCTION

Gamma-ray emission of tokamak plasmas is the result of the interaction of fast ions (fusion reaction

products, including alpha particles, neutral beam injector ions, ICRH-accelerated ions) with main

plasma impurities (e.g., carbon, beryllium). Gamma-ray diagnostics involve both gamma-ray imaging

(cameras) and gamma-ray spectrometry (spectrometers). For the JET tokamak, gamma-ray

diagnostics have been used to provide information on the characteristics of the fast ion population

in plasmas [1], [2], [3]. The applicability of gammaray diagnostics to high performance deuterium

and deuteriumtritium JET discharges is strongly dependent on the fulfillment of rather strict

requirements for the definition and characterization of the neutron and gamma radiation fields

(detector field of view, radiation shielding and attenuation, parasitic gamma-ray sources). Design

solutions aimed at fulfilling such requirements have been developed for two major components of

the JET gamma-ray diagnostics: the 2D gamma-ray camera [4] and the gamma-ray spectrometer

with a quasi-tangential line of sight.

2. CONCEPTUAL DESIGN OF THE UPGRADED JET TANGENTIAL GAMMA-RAY

SPECTROMETER. OVERALL SYSTEM

The field-of-view of the upgraded JET Tangential Gamma-Ray Spectrometer (TGRS) diagnostics

is defined by a system of collimators and shields (for both the neutron and the gamma rays). The

neutron flux at the gamma-ray detector position is to be reduced by a set of three Lithium Hydride
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(LiH) attenuators: two fixed and one movable. The upgraded TGRS configuration developed during

the conceptual design phase is shown schematically in Figure 1a. It contains the following main

components: front collimator, rear collimator, neutron shield, gamma-ray shield and neutron

attenuators.

A CAD (CATIA [5]) model of the full TGRS system is presented in Figure 1. It shows a mid-

plane cross-section of the full TGRS line-of-sight together with zoomed-in cross-sections of the

main components.

2.1. TGRS UPGRADE MAIN COMPONENTS.

The main components of the new TGRS diagnostics configuration, as presented schematically in

Figure 1.a, have been developed to provide the functions defined in what follows.

Front collimator.

The front collimator defines the spectrometer field of view at the plasma side of the line-ofsight.

Its dimensions (outer diameter and length) have been determined in terms of the available space in

front of the JET Octant 8 vacuum port. The front collimator acts as a shield for both the neutron and

gamma radiation. It uses polyethylene plates for the neutron collimation and lead plates for the

gamma-ray collimation.

Rear collimator.

The rear collimator defines (by its external diameter) the radial extension of the shielded field seen

by the bismuth germanate (BGO) gamma-ray detector. The thickness of the rear collimator is

determined by the necessary amount of material needed to shield the BGO detector from parasitic

neutron (Emax ~14.1MeV) and gamma radiation (Emax ~5MeV). The rear collimator is made up

of polyethylene plates for the neutron collimation and lead plates for the gamma-ray collimation.

The two collimators are designed to work in a tandem configuration.

Neutron shield.

A neutron shield to be installed on the south wall of the JET Torus Hall has the function of defining

an aperture at the entrance of the wall penetration. In this way the neutron interaction with the

penetration material is avoided and the structure and composition of the filling material (silica

grout) in the wall penetration is no longer involved in the neutron-photon transport calculations.

The dimensions of the neutron shield have been chosen as follows:

– Inner diameter: determined by the minimum value allowed by the wall penetration pipe

(extension of the KX1 flight tube, see Figure 1b);

– Length: determined by the requirement of providing an attenuation factor of ~102 for the

14.1 MeV neutrons;

– Outer diameter: determined by the radial extension of the neutron field seen by the BGO

detector beyond the rear collimator. The neutron shield is to be constructed from polyethylene

plates.
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Gamma-ray shield.

The gamma-ray shield has the purpose of reducing to a minimum the flux of the parasitic gamma

radiation reaching the BGO detector. This background radiation will be generated by the interaction

of the fast neutron flux with the components inside the KX1 bunker (especially of the KX1 x-ray

spectrometer, Figure 1b). The dimensions of the gamma-ray shield have been determined by the

geometry of the field-of-view in front of the BGO concrete collimator as well as the dimensions of

the external neutron attenuator which the shield is going to accommodate. The gamma-ray shield is

designed to be constructed from cast lead.

Neutron attenuators.

The neutron attenuators have the aim of reducing the neutron flux at the gamma-ray detector position.

Three attenuators are to be used for this purpose: two fixed and one movable. Lithium hydride with

natural isotopic composition is to be used as the attenuating material. The dimensions of the

attenuators have been determined by the diameter of the BGO detector and by the necessary total

thickness of material (LiH) to obtain the following attenuation factors: 104 for 2.45 MeV neutrons,

and 102 for 14.1 MeV neutrons.

2.2. TGRS DESIGN PROCEDURE.

The development of the conceptual design solutions for the TGRS upgrade has been done through

the following iterating procedure:

– Estimation of necessary materials and thicknesses to provide the required attenuation factors

for neutrons and gamma-rays;

– Evaluation of available space and determination of the positions of the collimators and shields;

– Estimation of outer diameter and thickness for the collimators and shields;

– CAD (CATIA) model for the new TGRS configuration

– Simplified TGRS model for the neutron-photon transport (MCNP [6]) calculations

– Update of the CATIA model based on the results of the MCNP calculations

This iterating procedure provided the final conceptual design solutions for the new TGRS

configuration. Further improvement of the design is to be done only after a detailed evaluation of

the neutronics performance of the proposed configuration is completed. This can be done during

the following design phase (scheme design) using both the updated CATIA model and more detailed

MCNP calculations.

3. CONCEPTUAL DESIGN SOLUTIONS DEVELOPED FOR THE MAIN

COMPONENTS OF THE TGRS DIAGNOSTICS UPGRADE

A number of conceptual design solutions have been developed for each of the main components of

the TGRS diagnostics upgrade. The solutions have been evaluated at various stages of the concept

development and a set of recommended designs have been selected to be further developed at the
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level of scheme design. The objects to be described are ordered from the tokamak machine outwards:

front collimator, rear collimator, neutron shield, gamma-ray shield and neutron attenuators. Regarding

the materials selected for the casings and supports for the above components, the selection was

done based on properties, behavior during manufacture and service life. These materials are:

INCONEL 600, SS316L and aluminum alloy.

3.1. CONCEPTUAL DESIGN FOR THE FRONT COLLIMATOR

The final design solution for the front collimator is that of the so-called “revolving modules”. The

main components of the revolving front collimator (Figure 2) are: front module (first module), rear

module (second module), positioning (rotating or revolving) support, active collimating materials.

3.2. CONCEPTUAL DESIGN FOR THE REAR COLLIMATOR

The main components of the rear collimator are shown in Figure 3: rear collimator assembly

(cylindrical shape), support assembly (semi-cylindrical halves) and pole support. The rear collimator

assembly is divided into halves to permit installation, its axis coinciding with that of KX1 flight tube.

3.3. CONCEPTUAL DESIGN FOR THE NEUTRON SHIELD

The main components of the neutron shield are shown in Figure 4: casing (two halves), support

(two halves) and a support platform. The casing comprises two identical semicylindrical parts joint

together around the KX1 flight tube, each part being filled with semi-circular polyethylene slabs.

3.4. CONCEPTUAL DESIGN FOR THE GAMMA-RAY SHIELD

The two gamma-ray shields (one fixed and the other one movable, Figure 5), are located inside the

KX1 bunker, close to the entrance of concrete collimator containing the BGO gamma-ray detector.

The shield is composed of two cylindrical parts one of them cut an angle of 22.5 degrees to be fixed

on the wall, and it has a central hole to accommodate the protruding part of the first section of the

neutron attenuator assembly. The other shield part is placed on mobile support that executes a

vertical translation (between the parking and working locations) of minimum 400mm driven by an

electrical motor. The axis of the shield coincides with that of KX1 flight tube. The shielding material

is lead, cast into cylindrical forms.

3.5. CONCEPTUAL DESIGN FOR THE NEUTRON ATTENUATORS

The TGRS neutron attenuators will be constructed by encapsulation of LiH discs inside a metal

casing (Figure 6). A hot pressing technology was proposed for the production of the LiH discs. The

all-metal casings are designed as vacuum tight enclosures using ultra-high vacuum (UHV)

technology.
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4. RADIATION (NEUTRON AND PHOTON) ANALYSIS OF THE UPGRADED

TANGENTIAL GAMMA-RAY SPECTROMETER

The TGRS neutron and photon transport calculation model used the MCNP [6] code and was

constructed starting from its 3D CAD (CATIA) drawings as illustrated in Figure 7. A much simplified

TGRS configuration which does not contain some important elements of the full system (e.g., it

does not contain the neutron and gamma-ray shields) was used to produce the MCNP model.

As an example of the numerical results, the efficiency of the TGRS collimator configuration

was evaluated by calculating the particle flux at a specified line-of-sight location (cell 33 in Figure

7) with and without the collimators (i.e., collimators replaced by air). The results are presented in

Figure 8, and show that the front collimator does not modify significantly the shape of the neutron

spectrum while producing an attenuation factor of approximately 7.

A first estimate for the overall performance of the full system for the simplified TGRS model

has shown that the neutron attenuation factor is ~1.5x104 with a 0.1 MeV cut-off in the MCNP

calculation, and ~3.7x104, without cut-off. The attenuation factor for the plasma-emitted gamma-

rays is ~20.

CONCLUSIONS

A major upgrade has been proposed for the JET Tangential Gamma-Ray Spectrometer (TGRS)

with the aim of providing adequate conditions for gamma-ray measurements in high power DD and

DT discharges. A complex system consisting of radiation collimators, shields and attenuators has

been developed up to the conceptual design level.
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Figure 1(a): Tangential gamma-ray spectrometer: schematic representation of the full system.

Figure 1(b): CAD (CATIA) model for the TGRS system. Midplane cross-section
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Figure 2: Complete front collimator (collimating
materials removed for clarity).

Figure 3: Rear collimator - overall view.

Figure 5: Overall view of the gamma-ray shield assembly.
Vertical translation between working (up) and parking
position (down) is shown.
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Figure 4: Main components of the neutron shield.
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Figure 8: Average neutron flux in cell 33 (see Figure 7) with (left) and without collimators (right).

Figure 6: Neutron attenuator casing (all-metal sealing).
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Figure 7: The MNCP model for the TGRS based on the CATIA model; Upper left: CATIA model;
Lower left: MCNP configuration; Right: details for cell 33 (wall penetration).


