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ABSTRACT

For the bulk tungsten divertor row, a development for the ITER-like Wall in JET, utmost care was

taken to limit the stresses in the solid tungsten plasma-facing components. The bulk W tile is

located at the position of the outer strike point for most plasma configurations as they are considered

for the ILW operation. The absence of active cooling makes temperature cycling of the refractory

tungsten material close to or through the DBTT (ductile-to-brittle transition temperature, about

200-300oC) and above the re-crystallisation threshold around 1250oC hardly avoidable.

Each tile is segmented in 4 stacks of 24 solid tungsten lamellae. The clamping scheme minimises

the vertical forces applied on the lamellae and provides a compressive pre-load for the integrity of

the stack, corresponding to uniform pressures below 6.0 N/mm2. The higher loads were deliberately

moved to the supporting structure : a wedge-shaped carrier, the clamping, and an adaptor to the

base plate of the torus. The thermo-mechanical analysis of the lamellae gives a picture of the

distribution of temperature and stresses for nominal exposures ≥ 7MW/m2 (10s). The possible

onset of the DBT and of recrystallisation were the main reasons for selecting the design with due

consideration of the mechanical properties of the material.

1. INTRODUCTION

A tungsten divertor is foreseen in the frame of the ITER-like Wall project at JET [1]. At the position

of the Outer Strike Point (OSP), the lifetime of tungsten coatings might be strongly limited by an

insufficient thickness, related to the technical risk associated with thick layers, or by their finite

resistance to high loads, related to the difficult matching of thermal expansion with the carbon

fibre composite substrate. Bulk tungsten is thus usually preferred at the outer strike point, not only

for its low erosion rate at low ion impact energies but also for its expected compliance with the

specified heat load, which includes a risk of melting. This load amounts, in the present case, to

7MW/m2 on the full geometrical surface (frustum), a power density that locally reaches much

higher values (up to 10-20 MW/m2 on very small areas) owing to the castellation and to the actual

wetted fraction of the tungsten tile. The corresponding nominal pulse length is 10s.

We have accordingly considered from the very beginning of the conceptual design phase that the

bulk tungsten (W) material must be handled with utmost care, due to extremely unfavourable boundary

conditions which add up to the relative mechanical weakness and to the difficult characterisation of

the tungsten material per se : an active cooling is not available and the operational temperature range

is such that excursions through the Ductile-to-Brittle Transition Temperature (DBTT) cannot be

excluded at the low end, and the recrystallisation threshold can easily be reached at the high end.

The above mentioned frame, especially the inherent brittleness of the refractory metal, has lead

to a mechanical design that attempts to act on tungsten solely in a compressive manner. As the

option of brazing solid tungsten on a carbon-based substrate had to be dropped in an early stage,

due to the tight schedule of 18 months for the complete R&D and design, this consideration has

added an unwanted complexity to the final component.
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An overview of the finalised modules for the bulk W divertor row can be found in [2].

2. MECHANICAL DESIGN

2.1 OVERVIEW OF THE COMPONENTS

The bulk W modules were described elsewhere [b,c]. The assembly consists, from

bottom to top, of (Fig.1):

- a star-shaped adaptor, which interfaces to the existing base carrier of JET and is installed

first, by Remote Handling (RH);

- a wedge carrier with deep toroidal cuts to prevent eddy current loops;

- two times four stacks of tungsten lamellae, which are clamped to the wedge carrier and

constitute two solid tungsten tiles.

The last two items are assembled together to an ~80kg module that can be lowered with RH onto

the previously screwed down adaptor.

The segmentation of a tungsten tile into four stacks is dictated by the basic need to minimise the

electromagnetic loads [4], the castellation within a stack is determined by similar considerations,

together with a sensible compromise between thermo-mechanical stresses and feasible

manufacturing. Stacks are thus assemblies of 6 mm thick tungsten lamellae interleaved with keyed

TZM spacers to provide 1mm gaps. The spacers are coated with an insulating ceramic on one side

(Al2O3) to prevent current loops. The discussion of lamella-to-lamella shadowing properties (profile

of plasma-facing upper surface, vertical chamfers, etc) is not in the scope of the present paper, see

for instance [3]. A compact description of the tungsten modules can be found in [5].

The total height of standard lamellae, around 40mm, is mainly determined by its heat capacity in

order to avoid overheating of the tile carrier (wedge) just below since the whole object has to be

cooled inertially. The four types of lamellae are shown in figure 2. Note the stress-relief rear slit,

the width of which depends on the position in the stack : wider slits are found only where clamping

bolts have to pass through.

2.2 THE TUNGSTEN STACK

Given the lamellae described in the previous section, it remains to stack and attach them firmly,

generating only compression forces on the tungsten. The assembly is pressed together using a tie-

rod like chain and the clamping is obtained through the spacers, which apply a moderate vertical

pressure downwards on the keying shoulders of the tungsten blades. The central hole, in form of a

racetrack shown on all pictures, is the channel for the chain. Fig.3 shows the bare chain-like

arrangement, with compensating spring elements to maintain tension during thermal expansion

cycles, and a fully assembled stack as a CATIA model and as a full scale prototype. The links are

made of Densamet [s] and the other parts of Nimonic alloys (grade 105 and grade 115) [2].

The combined function of the chain, ensuring stack integrity by compression and clamping by

pull down, reminds of tensegrity concepts. It is one of the very few options to cope with the mismatch
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in thermal expansion between tungsten and the structural materials required for the underlying

carrier structure.

An exposure test to an electron beam in the JUDITH-2 facility [6] was successful and was used

to validate the thermal model [7] but the number of pulses (<30 with relevant power density) was

not sufficient to assess the lifetime of a stack under realistic conditions, for instance with respect to

tribology; hence additional tests were planned and are all currently running. Beside the exposure to

a beam of ions and neutrals in MARION [8], a cycling test in vacuum with a high number of cycles

(>104) is aimed at checking the chain resistance, a relaxation test is applied to the springs (T ≥350oC)

and a creep test (500oC, 2000h) to the complete chain.

3. STRESSES IN TUNGSTEN

The tungsten lamellae are maintained in place with compressive forces, horizontally over the full

spacer area and vertically over the tungsten shoulders in the spacers recess. In both cases, respectively

with a stack compression of 820 N-1.2kN and a pull of 250-350N exerted by the clamping bolts,

the applied pressure does not exceed 6.0N/mm2. The thermo-mechanical stresses in W were computed

with three different FE systems: the SAMCEF software [9], ABAQUS [10], and ANSYS, applied

to different cases and lamellae types but with a bridging common calculation of the standard lamella.

All results are comparable within the error bars (about ±50oC in case of temperature distributions

and ±20MPa for the von Mises stresses). Examples are given as follows (Fig.4) : (i) temperature

distribution at a nominal T = 2200oC on the top surface at the end of the plasma pulse (in the worst

case of a wide rear slit, the temperatures are higher by a few tenths of oC only); (ii) tensile stress in

a standard, narrow-slit lamella; and (iii) stresses in an end lamella, which is always thicker than the

standard one and has to provide the additional supporting surface for the chain end combs.

The results confirm the beneficial effect of the stress-relieving bottom slit, a feature which is

particularly needed as the upper castellation originally foreseen [11] has been removed. Moreover,

only a small region is affected by significant tensile stresses of the order of max. 150MPa. Their

location corresponds to a temperature range between 200oC during baking phases and 1500oC when

the top of the lamellae reaches 2200oC. For commonly accepted values of the 0.2%-yield strength,

this is indeed only marginally acceptable. At this point, two effects have to be duly considered.

Firstly, up to now fully elastic behaviour is assumed but it is possible (dependent on uncertain

material properties at high temperature), that yielding may occur in the small critical tensile region

mentioned above. Hence an elastic-plastic analysis is planned to examine the effect of yielding in

detail. However, in the meantime, this effect is believed to be benign by noting that the relevant

stress is secondary in nature and so the loading is strain-controlled. This should lead to shakedown

to purely elastic behaviour after one cycle provided that the stress is less than twice the yield stress

which it is predicted to be.

If this limit is exceeded, plastic cycling will result and could ultimately lead to fatigue failure

through exhaustion of ductility.
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Secondly, the tungsten is certainly weakened by a recrystallisation which takes place in the range

1200-1500oC. An idea of the effect is given by the time versus temperature domain graph represented

on Fig.5 (with data from [12, 13], among others). Recrystallisation is a reason for introducing three

successive operating steps in the use of the bulk W divertor, starting with an imposed maximal

surface temperature on the plasma-facing facet of 1200oC and raising it gradually with an intermediate

stage at 1600°C to the nominal surface temperature of 2200oC [14]. Some of the tests discussed at

the end of section 2 may contribute to an assessment in this respect. Quantitatively, the chosen

tungsten grade displays mechanical properties that lie between those of the annealed and of the

stressrelieved materials. The 0.2% proof stress at 300oC, for instance, was specified at >450MPa

on delivery, for the poloidal direction in the torus.

CONCLUSIONS

An inertially cooled bulk tungsten divertor plate is evidently pushed to the material limits as far as

heat and electromagnetic loads are concerned. This is equally true for the tungsten and for the

carrier. The highest temperatures reached for different parts and the temperature excursions weaken

the mechanical properties of all materials down to RF≈1. In this difficult balance, it was deliberately

chosen to shift the highest loads from the tungsten to all other components: except from hardly

avoidable thermo-mechanical stresses, tungsten is acted on solely with compressive forces, the

driving reason for the selected design. As the tungsten properties are always difficult to determine,

especially in view of the possibly large scatter, we must admit that a definitive assessment of the

use of bulk W under these conditions - especially without active cooling – is part of the experiment.

The tests that are still running will help with refining the operating instructions. Several operational

constraints in the ITER-like Wall campaigns will be wall-driven [14].
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Figure 1: Overview of a bulk W module

JG
09

.1
51

-1
c

Wedge carrier

Base carrier

LFS

Adaptor assembly

HFS

2 Tungsten tiles/unit

4 Stacks/tile

Most of the lamellae
are “standard” (92%)

M
od

ul
e 

lif
te

d 
to

 s
ho

w
 a

da
pt

or

1

2

3

4

http://figures.jet.efda.org/JG09.151-1c.eps


6

Figure 2: The four types of bulk tungsten lamellae: (A) outer left, looking as usual from the high field side to the
centre of the torus; (B) standard lamella; (C) lamella at clamping location; (D) outer right.
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Figure 3: Clamping system and assembled tungsten stack
(CATIA model and full scale prototype)

Figure 4: FE computations with Tinit = 200oC, exposure to
9 MW/m2 for 10s. (a) temperature distribution in a lamella
at Tsurf = 2200oC; (b) tensile stresses in a standard lamella
at the end of the plasma pulse (c) stresses in a thicker,
outer lamella The arrows show the position where a tensile
stress of 150MPa is reached.
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Figure 5: Rough indication of the relevant re-crystallisation domain in a time/temperature plane
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