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ABSTRACT.

Routine studies are performed on JET using a new set of antennas to excite Toroidal Alfven

Eigenmodes (TAE). A TAE resonances footprint is observed in the plasma response measurement

when there is a noticeable variation in both the amplitude and the phase of the response with

respect to the excitation. An algorithm for real-time identification of TAE resonances, based on a

hardware lock-in amplifier, is presently used at JET for detecting such variations. In the paper, we

revisit the problem of estimating the I-Q characteristics from a known non-stationary frequency

mode, with a resonant-like phase response, embedded in a digital signal. A non-stationary linear

model is used in a recursive filter implementation of a lock-in amplifier. We propose it as a viable

alternative to hardware synchronous detectors such as the one in use at JET and compare its’

performance with standard digital lock-in techniques in terms of bandwidth and phase response

under high throughput rates requirements.

1. INTRODUCTION

he usefulness of MagnetoHydroDynamic (MHD) spectroscopy markers in the characterization of

tokamak plasmas is widely recognized since it adds valuable information on the already broad span

of measurements from plasma diagnostics. One particular useful marker targets a particular type of

plasma instabilities identified as Toroidal Alfvén Eigenmode (TAEs) [1]. The resonant wave-particle

interaction between these modes and the fusion born alpha particles (He4 ions) may lead both to

the destabilization of the modes [2] and to the stochastization of the alpha particles orbit, with a

consequent particle and energy confinement loss and possible damage to the first wall [3]. Assessing

the damping/growth rates, frequency and wavenumber analysis of TAEs may therefore provide

valuable information on bulk plasma stability and fast particle confinement losses. The conventional

approach to carry out the former is to drive the modes with dedicated antennas [4,5], operating at

frequencies within the range where TAEs are expected to propagate, according to some theoretical

model. When the antenna resonates with a particular TAE eigenmode in the plasma, there is a

significant increase in the plasma response that is clearly observed in the measured signals of

relevant diagnostics (e.g. magnetic Mirnov probes, soft X-ray tomography, microwave reflectometry

or beam emission spectroscopy [6]) by noticeable variations in both the amplitude and the phase

shift with respect to the excitation. In order to measure the amplitude and the phase of selected

signal components immersed in noise and compare to the excitation signal, lock-in amplifiers or

synchronous detectors are beyond any doubt the natural solution. This inherently Fourier based

method is widely used as a precision electronics measurement tool that plays a fundamental role

not only in experimental physics, but also in modern science and engineering in general [7-9]. In

this work, a general overview of the possible implementations of synchronous detection systems

for the analysis of the transfer function of resonant excitation of TAEs is addressed. Focusing in

more detail on the real-time techniques for estimating the amplitude and phase of the plasma response,

a Kalman Filtering (KF) [10] digital signal processing approach is investigated as a promising
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candidate to provide very high throughput estimates with flexible noise mitigation capabilities,

capable of contrasting the more conventional Low-Pass Filtering (LPF) approaches that are native

in a lock-in amplifier either digital or analog implementations. This work is therefore organized

as follows : in the next Section a brief outline of the TAE antenna hardware presently used at JET

is made together with a description of a characteristic TAE probing experiment, stimulating the

need for synchronous detection schemes. In Section III, the principles of synchronous detection

algorithms are overviewed, focusing on the merits and drawbacks of the hardware (analog) and

software (digital) implementations that may come along in view of real-time processing. Section

IV is dedicated to explain the fundamentals of a Kalman filtering implementation of a synchronous

detection algorithm that allows for the estimation of the amplitude/phase of embedded quasi-periodic

signals with tunable noise mitigation and sampling output. Concentrating on the particular case of

TAE resonance excitation, two strategies are proposed for estimating the damping rate for modes

with negligible driving sources, depending on whether one may dispose or not of the reference

waveform driving the antennas. A novel implementation using the extended Kalman filter is shown

where the amplitude of the plasma response is still recovered although no information is known

about the exciting signal.

2. TAE ANTENNA DIAGNOSTIC

The JET tokamak was among the groundbreakers in actively exploring the TAE mode characteristics

in hot relevant plasmas [4]. Early mode excitation employed the existing set of installed saddle

coils that were more routinely used for error field correction. Due to the coil set up configuration,

4 coils separated 90o toroidally in both lower and upper part of the torus (75m2 in total), little

flexibility could be achieved in the range of toroidal wavenumbers (labeled n) that could be driven,

i.e. n was limited to |n| ≤ 2 depending on the phasing (positive/negative) of each coil. However,

probing the full range of foreseen Alfven Eigenmodes (AE) modes for JET was possible owing to

a broadband power amplifier of 3kW with a frequency span between ~30kHz up to 500kHz. The

peak current and voltage induced in the saddle coils were, respectively, 30A and 500V. The driven

magnetic field in the plasma core didn’t perturb the plasma significantly owing to a low normalized

δB /B < 10-5 where δB represents the magnitude of the induced magnetic field perturbation and B

a typical value for the toroidal field (~1-3T). After 2005, an upgrade to the diagnostic was carried

out [11] to allow for a much more compact setup and consequently higher toroidal mode probing.

Two sets of 4 rectangular coils toroidally apart were installed, each made of 18 loops with 25 ×
25cm covering a total area of ~0.5m2 in total and placed 4cm behind the poloidal limiter. This

results on a wider range of toroidal modes that can be excited (|n| ≤ 50). An upgrade to the broadband

amplifier to 5kW was made and current and voltage peak values of 15A and 700V are achieved,

yielding a maximum magnetic perturbation in the range δB ~ 10-9-10-8 (T ).

Routine studies are performed on JET using this new set of TAE antennas to excite modes

typically in the 100-400kHz frequency range and measure the plasma response with Mirnov coil
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signals [12,13]. This identification mechanism is part of a closed feedback loop that controls the

antennas’ sweeping frequency direction in order to maximize the number of resonant crossings

during a JET pulse. The frequency of the driving magnetic perturbations is controlled by a Voltage

Controlled Oscillator (VCO) with characteristic sweeping values of 200kHz/s setting the time and

frequency resolution of the measurements for the damping rate and resonant frequency. This is

shown in Figure 1 for JET Pulse No: 69571 where the resonance matching is clearly evidenced in

the spectrogram from a Mirnov signal.

The spectrogram, however, provides only a first insight of where the resonance lies in frequency

space but not on the actual damping rate of the mode being driven. A practical estimate, adequate

for a real-time implementation, for the damping rate may be derived from the Full Width at Half

Maximum (FWHM) of the measured amplitude response as a function of the probing frequency

and the resonant frequency is simply obtained from the maximum response. Alternatively, more

refined measurements are possible from the transfer function H (ω) = M(ω) /R(ω), where M and R

stand, respectively, for the complex valued plasma response and the reference excitation. Resonances

manifest themselves as poles in the transfer function, from which one extract the damping and

frequency from the real and imaginary components.

Synchronous detection basically attempts to identify the components of the plasma response,

with the same frequency as the excitation, that are in-phase and in quadrature (I-Q) with the excitation.

In a complex plane representation, I and Q represent the real and imaginary components of the

response. Far away from the resonance, I and Q should remain constant thus indicating no change

in both amplitude and phase while crossing the resonance eventually leads to a circular pattern in

the complex plane.

At JET, the real-time identification of TAE resonances is based on a hardware INCAA based

synchronous detection system with up to 48 channel boards. The I-Q components are obtained by

analog mixing of the measured signal with inphase and quadrature references and applying an

analog LowPass Filtering (LPF) with ~100Hz bandwidth. Although a hardware implementation for

the synchronous detection is relatively straightforward, a software approach, in principle more

flexible, less expensive and requiring less maintenance, is less trivially implemented. This will be

examined in the next Section.

3. STANDARD METHODS FOR SYNCHRONOUS DETECTION

As illustrated in the previous section, the quality of the TAE antenna diagnostic measurement is

critically dependent on the effectiveness of the synchronous detection block. The goal is to estimate

the amplitude and phase response of a system that exhibits a resonant behavior when subject to a

known external excitation under certain conditions. The current hardware implementation of the

synchronous detection can be equivalently done in software by means of a Fourier projection of the

plasma response (Mirnov pick-up coil signal M) on to a unitary amplitude reference (Rcos) and

quadrature (Rsin) signals components. Incidentally, the synchronous detection procedure just described
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provides the basic principle of a Dual-Phase Lock-in (DPL) amplifier. In fact, in a DPL, both the amplitude

(A) and relative phase difference (φ) of a given signal can be calculated quite easily, respectively, from

A =    I2 + Q2 where one defines I = 〈M(t)Rcos (t)〉LPF and Q = 〈M(t)Rsin (t)〉LPF and φ = tan-1 [Q/I].

Alternatively, a less biased estimate of the amplitude may be obtained by mixing and low-pass

filtering with a delayed reference that is in-phase with signal M(t).

This homodyne-type detection requires a large enough amount of samples to be used for the

LPF to effectively filter out noise and provide the in-phase and quadrature components. These

synchronous detectors are powerful methods although one may note some inherent shortcomings:

noise mitigation may require large (order 100) of samples in a LPF Finite Impulse Response (FIR)

implementation, thereby putting some pressure on the “processing burden” and inevitably introducing

a time delay in the estimated amplitude and phase; it is best suited when there are no restrictions on

the amount of samples used for the LPF-FIR; real-time tuning of the filter parameters for interplaying

the low-pass region and the delay, although possible, is inherently an intricated problem since it

requires the change in real-time, not only of the value of the filter coefficients, but also of their

amount. Alternatively, one may opt for Infinite Impulse Response (IIR) filters. The performance of

both types of filters is similar when compared the magnitude response characteristics with the

delay introduced. Although IIR filters require a great deal less coefficients than the FIR filters for

similar magnitude and phase responses, a particular attractive feature for real-time implementations,

this comes at the price of, unlike the FIR filters, having a non-linear phase response. This, in practice,

means that the IIR filters introduce different delays depending on the frequency components present

in the signal and lead to distortions in the estimated signals. In the next section, an alternate algorithm

for the synchronous detection problem using the Kalman filter is discussed and its advantages for a

real-time implementation displayed.

4. THE KALMAN FILTER SYNCHRONOUS DETECTOR

The well established merits of the KF rely on its’ state variable estimation scheme. The KF is the

optimal quadratic estimator in linear systems corrupted with Gaussian distributed noise. It is

fundamentally a predictor-corrector recursive estimator providing its’ output based solely on the

theoretical system model, the previous state estimation, its’ current available measurement and on the

balance between the model and measurement variances [10]. The KFs’ performance, assuming the

theoretical model is adequate for the problem at hand, is solely controlled by the ratio of the model

and measurement variances. Ultimately, and assuming that, as usual, the measurement variance is an

intrinsic characteristic of the measurement instrument, the KF can be tuned simply by changing the

degree of confidence that is attributed to the model. Clearly, the KF assumes that both the measurement

and system noise are non-correlated, zero mean and normally distributed random variables.

A harmonic estimator implementation of the KF [14,15] is intrinsically a time domain signal

component estimator that provides, in a least square sense, both in-phase and quadrature projections

of the signal over a time varying frequency path, thus suiting very well the purpose of implementing
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a synchronous detector. The fundamental element in a Kalman filter modeling is the actual linear

process matrix that describes how one passes from one time sample to the next with no knowledge

of the actual measurement (the predictor step), i.e.

(1)

where one is picturing that, in a complex plane representation, a quasi-periodic signal basically

rotates by ∆θ(t) = 2πf (t)/F at every time step while keeping the same amplitude (Fs is the sampling

frequency). The predictor step that provides an a priori estimate for the state vector is given by

(2)

where  xk-1 is the estimated system state at sample k-1. The state vector in this case is a column

matrix whose lines are the in-phase and quadrature signal components. A relation for the a priori

error (difference between actual and estimated state variables) covariance is obtained as follows

(3)

where Q is the covariance matrix for the theoretical model, i.e. it provides some measure of the

inadequacy of the linear model to actually describe the process. The update (corrector) equation is

given by

(4)

where the innovation is just a gain (K) multiplied by the residue, where an a priori measurement

Hx- “ is assumed. In this equation the gain, Kk, is given by

(5)

where R is the measurement variance (a scalar). To close the system, the a-posteriori covariance is

given by

(6)

Analyzing (4) and (5) leads immediately to two extreme and opposite limits of operation. When the

uncertainty of the measurement tends to zero (R ~ 0) the KF estimation is simply the experimentally

ˆ

ˆ

F (t) = 
cos(∆θ(t))   -sin(∆θ(t))

sin(∆θ(t))   cos(∆θ(t))

< < - xk  = Fxk-1 

- Pk  = FPk-1 FT + Q 

< < - 

< - xk  = xk + Kk (zk - Hxk

- - Kk = Pk  H
T (HPk H

T + R)-1

- Pk = (I - Kk H) Pk
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derived system state. On the other hand, a big uncertainty in the measurement or, equivalently, a

vanishing model uncertainty leads to a very small filter gain thus essentially disregarding the

measurement.

An obvious and straightforward generalization is possible via block diagonally expanding the

process matrix. This enables the KF harmonic estimator to simultaneously keep track of several

periodic signals with different frequencies at runtime. In fact, the estimation quality of the signal

component for a given frequency depends directly on the simultaneous estimation of all dominant

frequency components [15].

In this particular case, we have the knowledge, at all times, of the frequency that we are requesting

the VCO to produce but might or might not have the actual reference (excitation) signal fed to the

antennas. As previously mentioned, resonance crossings can be identified by noticeable and

characteristic changes in both the amplitude and relative phase difference in the Mirnov signal. In

particular, one of the quantities of interest is the excited modes’ damping rate. For this purpose one

can either use the phase response, the amplitude response or both complementary. Clearly, extracting

the instantaneous amplitude of the signal component of interest is a straightforward task (the

amplitude at time sample k is just  Ak =   x2k-1 + x2k, requires absolutely no knowledge of the

reference signal and by analyzing the FWHM of the resonant peak one can also estimate the damping

rate. If however one requires the phase difference estimation as a cross check, then it is critical to

also acquire the in-phase and (estimate) the quadrature components of the reference signal,

i.e. x ref ,2k and  x ref ,2k+1 respectively. Provided these are given, one can immediately build I~sin (φ),

Q~cos (φ) as indicated in Section III and extract their phase difference (φ). If one is only given the

reference signal itself, along with knowledge of the frequency requested to the VCO, one can build

the quadrature component by using the KF estimator directly on the reference signal. This is a good

advantage of the Kalman filter approach since it contributes to the overall simplification of the

estimation process.

The present setup of the TAE antenna diagnostic in JET does not perform the acquisition of the

VCO output signal which is essentially the excitation waveform that drives the antennas. Therefore,

in order to perform a fair comparison between the DPL and the KF, the excitation and the plasma

response signals have been synthesized with an amplitude and phase evolution as displayed,

respectively, in Figures 2 and 3 and indicated by the black line. The input frequency of the excitation

is swept with a trend similar to experiments and is indicated by the red line in Figure 6. The sampling

frequency was set to 106 samples/s and normally distributed random noise yielding 0.5 signal-to-

noise ratio was added to the synthetic Mirnov signal. As shown in Figures 2 and 3, the performance

of the KF harmonic estimator for RI/Q = 2×104 (where I is the 2×2 identity matrix) is comparable

with the performance of the DPL with a FIR-LPF with 3kHz cutoff frequency and 400 taps (200

samples delay). Amplitude and phase estimations are provided in this case at a rate of 20×103

samples/s. It is worth mentioning that although a IIR-LPF would require less filter coefficients, its’

non-linear phase response can introduce non-trivial and not acceptable signal distortion.

ˆ 2 2ˆ

ˆ ˆ
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In many real-time systems running at a pre-defined cycle timing interval (1/Fout) a single estimation

is often required to be derived entirely from the N samples acquired within the cycle itself (N = Fs/

Fout where Fs and Fout are, respectively, the sampling frequency and real-time network throughput

rate). For the particular case where a 50kHz cycle time is required implying that only 20 samples

are available each cycle, Figure 4 shows the comparison between the KF harmonic estimator and a

DPL with a 20 tap (10 sample delay) FIR-LPF. The DPL obviously has a lower delay than the KF

at the expense of noisier estimates. Also, whereas in the case of the DPL a change in the bandwidth/

delay requires recalculation of the filter coefficients making it hard for performing online multirate

signal processing, in the case of the KF harmonic estimator the only requirement is to change the

RI/Q factor since the filter relies only on the previous system state estimation.

Clearly, the KF harmonic estimator provides relevant improvements over the DPL mainly in the

cases when a predefined and fast cycle time imposes the usage of only a few samples for the LPF

although its’ robustness and ease of use make it essentially a more maintainable and updatable user

friendly tool.

5. THE EXTENDED KALMAN FILTER FREQUENCY TRACKER

In the case when the amplitude estimation suffices for the calculation of both the resonant frequency

(corresponding to peak in amplitude) and the damping rate (given by the FWHM), the reference

waveform need not be known because it is only relevant for calculating the systems’ phase response

with respect to the excitation. The Extended Kalman Filter (EKF) [16, 17] Frequency Tracker (FT)

[18,19] which is a non-linear application of the KF to the problem of frequency estimation is also a

tool tailored to estimate both the frequency content of a signal and its’ temporal evolution.

The intrinsic limitation of the KFs’ linear model is clearly an obstacle when we acknowledge the

overwhelming majority of real lifes’ non-linear applications. In the EKF, the system state distribution

is approximated by a gaussian random variable which is then propagated through the (first order)

linear approximation of the non-linear model. This procedure has been extensively and successfully

applied to non-linear estimation in the areas of state-estimation and machinelearning [20].

The single frequency matrix model for the EKF-FT given by (7) is merely an extension of (1).

(7)

where x = (x1, x2, x3)
T and x3,k-1 = 2 πf (t) /Fs . The linearization of the model propagates to the

estimation of the error covariance since the later is now given by

(8)

ˆ

0 0 1 - ε

0 

0 
F (t) = 

cos(x3, k-1)   -sin(x3, k-1)

sin(x3, k-1)     cos(x3, k-1)

< 
< 

< 
< 

Pk  = ΓPk-1 ΓT + Q-
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where the Jacobian matrix  Γ =            is used. The filter gain is quite similar although the

generalization encompasses also transfer matrices H that need not be constant, i.e.

(9)

(10)

with the partial derivative denoting a Jacobian of the matrix.

The update of the state variable remains given by (4) where it was seen that the correction of the

prediction is given as a function of the error term with a gain that is now provided by (9). The EKF

is no longer the optimal linear quadratic estimator as it relies on (equivalently) a first order Taylor

series approximation of the system model. It can also be shown that the EKF-FT provides an unbiased

estimation of the unknown frequency only for ε = 0 [19]. Intuitively, it implies that from one time

step to the next we are assuming in the model that the frequency doesn’t change. Obviously this

assumption, if not accurate, is amended in the corrector step of the algorithm and the estimated

frequency is updated accordingly.

In Figure 5, the amplitude estimation performance comparison between the KF harmonic estimator

and the EKFFT is shown. While the KF harmonic estimator requires the online knowledge of the

signal frequency but does not require a reference signal, the EKF-FT not only needs none of that

information but also provides its own estimation of the signal frequency (see Figure 6) with a

similar signal-to-noise ratio and time delay.

CONCLUSION

In this work, an alternative strategy and implementation for the real-time synchronous detection of

the plasma response to the excitation by the TAE antenna at JET was investigated. The Kalman

filtering implementation of a lock-in amplifier was derived and shown that it is natively suitable for

real-time data streams and consumes little resources when compared to the FIR/IIR LPFs required

by conventional approaches. The Kalman filtering approach is also very flexible and low maintenance

since it basically requires only the online tuning of the ratio between the measurements error

covariance and the uncertainty in the underlying model that is considered to describe the

measurements. In addition, and Extended Kalman Filtering implementation of a lock-in amplifier

was shown to require absolutely no knowledge about the excitation waveform and, if one can use

solely the amplitude of the plasma response to extract the required information, is a powerful

method providing adaptively, as a parallel product, a high quality frequency estimation.
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Figure 1: Typical spectrogram of a Mirnov coil signal
showing clearly the frequency sweeps and resonant spots.

Figure 2: DPL and Kalman amplitude estimation

Figure 3: DP and Kalman phase estimation Figure 4: DPL and Kalman amplitude estimation
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Figure 5: Amplitude estimation performance comparison
between the KF and EKF.

Figure 6: EKF frequency estimation.
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