
E. Giovannozzi
and JET EFDA contributors

EFDA–JET–CP(08)06-04

Object-Oriented Intreractive
Access to JET Database

“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

Object-Oriented Interactive
Access to JET Database

E. Giovannozzi and JET EFDA contributors*

1Associazione EURATOM-ENEA sulla fusione, CR Frascati, Roma, Italy,
* See annex of M.L. Watkins et al, “Overview of JET Results ”,

 (Proc. 21 st IAEA Fusion Energy Conference, Chengdu, China (2006)).

Preprint of Paper to be submitted for publication in Proceedings of the
8th International FLINS Conference on Computer Intelligence in Decision and Control, Madrid, Spain.

(21st September 2008 - 24th September 2008)

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

.

1

ABSTRACT.

Some preliminary classes have been developed in MATLAB to interface with the JET PPF system

which stores the data elaborated after the discharge. These classes simplify the most common

operations required during an interactive analysis and visualization of JET data, while keeping all

the power of a full programming language. The first class is ppfs which given a shot number

retrieves a list of all the main family (DDAs) related to that shot, the second is ddas which lists all

the DTYPEs belonging to a DDA. The last two classes are used for retrieving the actual data and

perform the most common operation, such as basic plotting slicing and arithmetic operation.

1. INTRODUCTION

Object Oriented (OO) languages are widely used as they permit to write large codes in a more

natural and easy way. Many languages have been changed in order to support a form or another of

objects [1].

An interactive environment, and language, as MATLAB† has the possibility to manipulate natively

arrays and, with OO features, other kind of data while retaining all the strength of a full programming

language. In the following MATLAB has been used to develop four classes to retrieve data from

the JET PPF (Processed Pulse File) system, a porting of these classes to other interactive environment

is also under way. The jet PPF system [2] stores data elaborated after every discharge. Every signal

stored there is characterized by its family name DDA (Diagnostic Data Areas) and its proper name

DTYPE (Data Type), each of them of four characters. They are also characterized by the owner (in

the case of private PPFs) and a sequence number (we are not caring about the sequence number

now, but we are assuming to be interested only in the last written sequence number). An owner (by

default JETPPF), a DDA and a DTYPE is all that is required to get the proper data. All the data are

basically bi-dimensional, matrices with a time and a radial coordinate, even though one of them

could be missing if one is interested in one-dimensional data. A short description of the data is also

stored in the archive. There are three basic operations that the interactive user might want to do, the

first is to retrieve the correct name of a given measurable quantity, the second to make slices and

plot them, third to make operations between different data. This has been achieved with four classes.

The first two are directly related to the DDA and DTYPE parameters, the first class called ppfs

give a list of the DDAs, while the second class called ddas gives a list of a DTYPE inside a DDA.

The second two classes are more related to the data itself, a first class to deal with the bi-dimensional

data, the second to deal with the slices. A single class could have been used instead of two different

classes, and in the future they may be combined together.

2. PPFS AND DDAS CLASSES

These two classes are quite similar and in the following the ppfs class is described first. From the

user point of view, a ppfs object appears as a structure where its fields are the DDAs, and

consequently the DTYPEs appear as fields of DDAs. This has been obtained overloading the field

operator (the function subsref of the object). Even though there is strict separation in MATLAB

2

among input and output parameter of a function, it is possible, with a perfectly legal trick (using

only documented functions), to change an input parameter. This is specially important with OO

programming for interactive use as it is more natural and fast to have objects that can change there

status depending on the methods called. Even if the access to JET archive is quite fast the retrieved

data are stored in memory changing the ddas or the ppfs objects accordingly.

The two main attributes of the ppfs class are two arrays, one is a character array with the names

of all the DDAs, the second is a cell array where the ddas object would be stored. There are other

attributes like the shot number or the userid for private PPFs. The ddas class is similar, with

corresponding arrays for storing the DTYPE names and objects.

The main constructor fetches the DDA names from JET archive and returns to the caller. No

ddas object is stored in the second array. This is the aim of the subsref method. When a complete

field is referenced, the subsref method calls a constructor for the corresponding DDA, which in

turn fetches the list of the DTYPE. The subsref function would then modify the original ppfs

object, so that a following reference to the same field does not result in a new access to the database.

The subsref method would then return a ddas object (that accordingly shows the list of its DTYPE).

If one asks an incomplete field then a ppfs object, with only the DDAs beginning with that initials

is returned (that would then display on the screen only the selected DTYPE). The ddas objects

have a similar behaviour to the ppfs objects with v2d objects in place of ddas objects. The other

two methods are: the display method which display on the screen the list of DDA (DTYPE) belonging

to the ppfs (ddas) object; and a list method to convert a ppfs (ddas) object to a list of names.

3. V2D CLASS

The data in the PPF system are basically bidimensional, with the first dimension being a spatial

dimension and the second one a temporal dimension. One of the two dimensions could be absent,

in this case the data depend only on time (by far the most frequent case), or on spatial position. The

v2d class has been written in order to resemble as much as possible this situation.

There are three fields: the first is r, a spatial coordinate, the second is t, a time coordinate and

the third is v, the value of the data at the specific time and radius. The radial coordinates could be

a matrix, while the time coordinates is always a vector. This way is possible to model a situation

(for example the ECE temperature) where the detectors measure the temperature at a position which

depends on the magnetic field.

The most common operation required is slicing the data along a dimension, and two methods

have been written to slice the data along time or space. These methods accept a parameter for

selecting the position of the slice. For example, to get a slice along time, a parameter with the radial

position should be supplied. There are two kinds of slicing: in the first one the closest profile to the

given position or time is returned, in the second one an interpolation is performed. This kind of

slicing is mostly useful when an object v2d has got an r coordinate which is a matrix, the first kind

of slicing would give jumps when a different detector is selected. As an option for the first kind of

slicing there is the possibility to follow one detector even if its position is changing.

3

The first kind of slicing could also return all the possible slices if no parameter is given, or an array

of slices if the supplied parameter is a vector. The slices are objects of vxy class. Array of vxy

objects can be created and a multiple slice produces an array of vxy object.

Actually it would have been possible to use a single class instead of two classes but in this

preliminary version of the code two classes were written as the vxy class was already present (it

was used to access experimental data in FTU which are mostly one-dimensional); moreover there

are simple methods in the vxy class that would have required a different design if they had to be

applied to bidimensional data.

4. VXY CLASS

The data of a vxy object are one-dimensional, with two arrays x, y. A further field ud is used to

store additional data. Even if it is not required the x being in ascending or descending order, many

methods that imply an interpolation work only for monotonic x data. There are four main methods:

• Methods that perform an unary or a binary operation between two vxy objects mostly

implemented as operators, or simple function.

• Methods that change the object, like swapping the x and the y field or restricting the x

between two given values, or getting interpolated value at a given coordinate.

• Methods to get the x and the y array or the ud field.

• Method plot which plots arrays of vxy object.

Some of the methods are implemented as pseudo-fields overloading the subsref method, for example

the method which get the x or y array. They appear to the user as fields of a structure, while the

subsref is actually called. This is useful as it hides the true fields from the user. The methods that

combine two different vxy objects need a common x base where to interpolate the data. The default

choice is to get the union of the two x bases in the zone where both were defined. The interpolation

is linear but other kind of interpolation and x base choice could be selected.

5. EXAMPLES

This is a simple example showing from the user point of view the interaction with the system. First

the list of all the public DDA belonging to the Pulse No: 57941 is printed on the screen (only few of

them are shown here).

>> w = ppfs(57941)

w =

Shot: 57941

 uid: JETPPF

n.DDA: 106

 bol4: — 7

 bolo: — 7

 …

4

Then the list of all the DTYPE belonging to the nft2 DDA and starting with pr is shown on the

screen. A small comment attached to the DTYPE is also shown, so the users can quickly find what

they are searching for.

>> w.nft2.pr

 ans =

Shot: 57941

dda: nft2

uid: JETPPF

n. DT: 3

prhi: 21 x 145 - ne(sqrt(psi)) Hi Limit

prlo: 21 x 145 - ne(sqrt(psi)) Low Limit

prof: 21 x 145 - ne(sqrt(psi)) on C2 Grid

The radial coordinate of the density profile is the square root of psi. The psi can be found in the

efit DDA.

>> w.efit.psn

 ans =

Shot: 57941

 dda: efit

 uid: JETPPF

n. DT: 3

 psni: 33 x 149 - PSI_NORM (RAD_NORM_IN)

 psnm: 33 x 149 - PSI_NORM(R) ON Z=ZMAG

 psno: 33 x 149 - PSI_NORM (RAD_NORM_OUT)

The correct DTYPE is psnm. Then we can slice the data at for example 50s. The ECE temperature

is also read. The data are also normalized.

ne = w.nft2.prof.ct(50) / 1e19;

psi = w.efit.psnm.ct(50);

te = w.ecm1.prfl.ct(50) / 1e3;

In order to get the density as function of R instead of psi it is possible to use the pseudo-field f

which realizes a sort of functional composition.

ner = ne.f(sqrt(psi),’extreme’);

Then we plot the psi, the density as function of the psi and as function of the radius, and the

temperature and pressure. Note that the temperature and the density are multiplied together even if

they have a different spatial base, and in two plots the radial coordinate is restricted between 2 and

4 with the : operator (Fig.1).

5

plot(psi:2:4,’k’)

plot(ne,’k’)

plot(ner:2:4,’k’)

plot(te,’k’,ner*te,’k—’)

CONCLUSION

The use of OO features of MATLAB has greatly simplified the use of this interactive environment.

Four classes have been developed, their main methods have been shown together with some examples.

REFERENCES

[1]. M. Metcalf, J. Reid and M. Cohen “Fortran 95/2003 Explained” Third Edition, Oxford

University Press.

[2]. R. Layne, M. Wheatley “New Data Storage and Retrieval Systems for JET Data” EFDA–

JET–PR(01)23

Figure 1: The plots produced by the methods plot as shown in the text. The labels on the x and y axes and the legend
have been added later for clarity. (a) the psi as function of the radius; (b) the density as function of the psi; (c) the
density as function of the radius obtained combining ne(sqrt(psi)) and psi(R); (d) the temperature and the pressure (in
arbitrary units), the latter obtained multiplying temperature and density.

1.0

0.5

0

1.5

3

(a)

2 4

ps
i

R (m)

1.0

0.5

0

1.5

0.5

(b)

0 1.0

n e
 (

a.
u.

)

psi

1.0

0.5

0

1.5

0.5

(c)

0 1.0

n e
 (

a.
u.

)

R (m)

4

2

0

6

3.0 3.5

(d)

2.5 4.0

T
e

(k
eV

),
 p

r (
a.

u.
)

Te

pr = ne
*te

R (m)

JG
08

.3
58

-1
c

http://figures.jet.efda.org/JG08.358-1c.eps

