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ABSTRACT.

Structural pattern recognition techniques are an efficient way to apply a pattern oriented data retrieval

paradigm. Some techniques have already been implemented in the JET Analysis Cluster (JAC) by

means of a general purpose tool (software application) to allow the identification of similar patterns

(structural shapes) inside temporal evolution signals. Data retrieval methods are based on three

essential aspects: feature extraction (to reduce signal dimensionality), the classification system (to

index objects according to some criteria) and similarity measure (to compare how similar two

objects are), but there is not a single solution or unique criterion to handle these key elements. This

paper provides a new solution to the localization and extraction of similar patterns in time-series

data. Alternative searches are proposed to objectively increase the recognition of similar patterns

so as to achieve better results on the data retrieval. In the proposed approach, patterns are represented

by string of characters. Looking for patterns means looking for characters. The recognition problem

is translated into a character-matching problem. Thinner search strategies have been studied with

excellent results in the detection of long subpatterns. Long  subpatterns are not so easy to identify

since even a single mismatch in one character can compromise similarity between two patterns.

Identifying long patterns in a fast, fault tolerant and intelligent way is the aim of  the analyzed

strategies, formally based on statistical criteria and some aspects of probability theory.

1. INTRODUCTION

Some pattern recognition methods for data retrieval have already been applied to  fusion databases.

The first approach was focused on looking for similar full waveforms [1] (the shape of an entire

signal) and later, the interest was concentrated on searching for specific patterns within waveforms,

developing two different techniques for this task (based on equal length segments [2] and variable

length segments [3]). A segment is the result of applying the least square minimization procedure to

obtain a fitted straight line. The slope of each segment is classified according to a discrete set of

values (alphabet code) that can be stored as a sequence of  characters in a relational database,

allowing the use of well formed query sentences to search for specific patterns. A software application

for data retrieval (including entire waveform search and pattern search within signals) is available

in a concurrent way from the JAC Linux cluster at JET.

In general, the feature extraction and the classification systems have obtained good results in the

detection of general subpatterns. With the extended use of the application, it has been observed that

long subpatterns are not always matched correctly. Studying this problem, we have detected that

the number of encoded segments and the number of utilized primitives (the selected set of characters)

are essential elements to obtain good results. In addition, a new primitive computation is presented

to simplify the waveform encoding, to increase the search efficiency and to optimize the data retrieval

for long patterns.

2. OPTIMIZING THE PATTERN RECOGNITION TECHNIQUES

The methods described in this paper have been focused on optimizing the already existing techniques.
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As  in a preceding approach, the original signal is decomposed into equal line segments. However,

in this case, each segment is the result of applying a delta transformation to consecutive Haar

wavelet coefficients of the entire signal [4] (δ is the difference between sequential data). Then the

slope of a segment is δ/∆x. If  we apply the Haar transform,∆x is constant because it represents the

same time period. Thus, ∆x is the unique value that we need to know. The entire time discharge in

JET pulses is of the order of 40s and reducing a signal to 64 Haar coefficients, we get a resolution

of ∆x = 625 mseg. Therefore, 64 Haar coefficients are an adequate value to decompose any signal

without large losses of information. After this processing step, the segments are labeled according

to the sign value of the delta transformation, i.e. positive (primitive a), negative (primitive b). The

feature vector (set of primitives) and the delta values for each signal are the quantities stored in the

relational database.

The selection of only 2 primitives is the essential difference with regard to previous developments.

By using just two primitives, the probability that the longest pattern (the entire waveform) will

happen is 1/264 (2 primitives and 64 delta values) very much higher than in the previous encoding

1/4128 (4 slopes and 128 constant segments). With only two primitives and 64 delta values, we have

increased the possibility to match longer subpatterns hidden in large amount of data.

3. SIMILARITY QUERIES

Given a query Q (pattern to seek) and N objects (stored signals in the database) where everyone has

M (64 in this case) data sequences (set of primitives), we can do either exact searches (whole

matching) or approximate searches (partial matching). Exact searches consist of locating data

subsequences inside the objects that match a query sequence exactly (complete query). Approximate

searches locate data subsequences that match a query subsequence (incomplete query). Finally, to

identify a subsequence that is most similar to the one of interest, a similarity measure (the Euclidian

distance) is defined to be able to compare how similar two subsequences are. This query range

allows finding every object with the better distance from the query Q. If only exact searches are

performed, short subsequences will be found with higher probability (excess of results) but long

subsequences will be found with a lower statistically probability (lack of results) due to very small

and sometimes irrelevant mismatch with respect to the reference pattern. As these sequences become

longer, the probability of matching should be increased by allowing more flexible queries

(approximate similarity). This would permit to match many sequences with high relationship

independently of the pattern length. To avoid recovering too short sequences, it is possible to demand

that the pattern length has a dimension or minimal size.

4.  IMPROVING THE DATA RETRIEVAL

Delta values in Nuclear Fusion data often represent a small change near zero, either positive or

negative. Figure 1 shows the frequency distribution of the whole set of deltas typical of Electron

Cycloctron Emission (ECE) signals used to measure the electron temperature of the plasma. This

has been fitted with a normal probability density function with parameters given by the sample
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mean 142.85 and standard deviation σ = 38960 of the data.

The likelihood function (1), is the normal probability density function at each of the x values

(deltas):

(1)

Almost all delta values are grouped in the middle of the distribution and due to the fact that very

small jumps near zero can adopt both values (positive or negative) without scarcely any physical

significance (these variations can be due simply to noise), we can compose powerful queries fitting

these primitives with any value, increasing in this way, the probability of  matching long subpatterns

in the relational database. The flexibility level required in the query will depend on which proportion

of cases falls into the indistinct central category.

A statistical analysis is the best way to determine the range of the δ variations where the primitives

can take any value.

According to our analysis of the ECE signals, the choice [-σ, σ] (Figure 2), is not a good

selection because there will be a lot of indifferent values (high number of cases that fall into the

central category, indistinctly ‘a’ and ‘b’, near to zero), and only a little bit of significant primitives,

i.e. ‘a’ or ‘b’. To increase the number of suitable primitives it is necessary to reduce the interval to

a range of values where they do not contain useful information (close to zero). This was achieved

choosing the range [-σ/32, σ/32] (Figure 3). Thus, the probability of indifferent values has been

reduced and the suitable primitives (far to zero) appear with higher frequency. With this feature we

compose powerful queries, getting a large relationship of similar patterns in the data retrieval.

CONCLUSIONS

The probability to match many patterns has been increased allowing better scores than previous

results. Partial matching is an approximate way to amplify the similarity between longer subpatterns

and whole matching is an exact way to search the shortest subpatterns. Hence, the possibility to

locate a lot of similar subsequences is less dependent on the pattern length. In addition, statistical

criteria were studied to identify a stable decision on the primitive assignment that can be suitable to

any kind of signal and also no dependent of the database size. These intelligent strategies have been

added to the former similarity algorithms and have been successfully implemented on the tool

already available in the JAC Linux cluster at JET.
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Figure 1. Frequency distribution of the whole set of deltas and the normal probability
density function for an ECE signal at JET.

Figure 2: If we choose  negative sigma and positive sigma as arbitrary central boundaries, the probability to find a
delta value between these central limits is the area closed between the curve and the lower and upper limits.
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Figure 3: Frequency histogram and probability with [-√/32, √/32] as central boundaries.
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