
Y Liu, M.S.Chu, I.T. Chapman, C.G. Gimblett, M.P. Gryaznevich,
R.J. Hastie, T.C. Hender, D.F. Howell, S. Saarelma

  and JET EFDA contributors

EFDA–JET–CP(08)05/18

Modelling ResistiveWall Modes with
Self-consistent Inclusion of Drift

Kinetic Resonances



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



Modelling ResistiveWall Modes with
Self-consistent Inclusion of Drift

Kinetic Resonances
Y Liu1, M.S.Chu2, I.T. Chapman1, C.G. Gimblett1, M.P. Gryaznevich1,

R.J. Hastie1, T.C. Hender1, D.F. Howell1, S. Saarelma1

and JET EFDA contributors*

1EURATOM-UKAEA Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
2General Atomics, San Diego, California 92186, USA

* See annex of F. Romanelli et al, “Overview of JET Results ”,
 (Proc. 22 nd IAEA Fusion Energy Conference, Geneva, Switzerland (2008)).

Preprint of Paper to be submitted for publication in Proceedings of the
22nd IAEA Fusion Energy Conference, Geneva, Switzerland.

(13th October 2008 - 18th October 2008)

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK



.



1

ABSTRACT.

We investigate the effect of drift kinetic damping on the Resistive Wall Mode (RWM), due to the

mode resonance with magnetic precession drifts and/or bounce motion of bulk plasma thermal

particles. A self-consistent toroidal drift kinetic model is developed and incorporated into the

MHDcode MARS-F [Y.Q. Liu, et al., Phys. Plasmas 7, 3681 (2000)]. The new code (MARS-K) is

used to study the RWM stability in ITER steady state scenarios, and to model the Resonant Field

Amplification (RFA) for JET plasmas. The self-consistent simulations predict a parameter regime

where the RWM in ITER is fully stabilised by the drift kinetic effects combined with the toroidal

plasma flow. A wider stable parameter space is predicted by the perturbative approach based on the

ideal kink mode eigenfunction. The difference is attributed to the modification of the

RWMeigenfunction by the kinetic effects. Applying the MHD-kinetic hybrid code MARS-K to

JET plasmas leads to the identification of possible instabilities responsible for the observed RFA at

lower beta.

1. INTRODUCTION

Advanced tokamak scenarios, including those foreseen for ITER, aim at simultaneously maximising

the plasma pressure and operating in steady state. This requires that all slowly evolving macroscopic

MHD instabilities be stable. It is well known that the Resistive Wall Mode (RWM), which is a global

kink-like, non-axisymmetric instability, with growth rates reduced by the surrounding conducting

wall(s), poses the limit to the steady state operation of advanced tokamaks. Therefore, it is critical to

ensure that this mode stays stable when the plasma pressure exceeds the ideal no-wall beta limit.

Two approaches to stabilise the mode have been under extensive investigation during recent years,

namely active control and rotational stabilisation of the mode, with kinetic damping effects being

involved. The physics of rotational (or kinetic) stabilisation of the RWM remains unresolved, especially

in view of the new experimental evidence from DIII-D [1, 2] and JT-60U [3], where balanced neutral

beam injection produces RWM stable plasmas with very slow toroidal flow. Understanding the damping

physics of the RWM is of significant importance not only for predicting the critical rotation speed for

ITER plasmas, but also for understanding other related physics effects, such as the Resonant Field

Amplification (RFA), and plasma momentum damping (one of the momentum damping mechanisms,

the neoclassical toroidal viscous damping, depends on RFA).

In this work, we develop a full toroidal drift kinetic model for the RWM, and apply this model to

predict the RWM stability in ITER advanced scenarios [4], as well as to model the RFA plasma

response in JET plasmas. This model is based on drift kinetic resonance damping of the mode at

relatively low mode frequencies in the plasma frame [5, 6]. In contrast with Refs. [7, 8], we include

the kinetic terms self-consistently in the MHD equations, which allows us to compute the kinetic

energy perturbation using the RWMeigenfunction modified by drift kinetic effects. In the perturbative

approach, the kinetic energy is normally evaluated with eigenfunctions computed for the ideal kink

mode without conducting walls. A significant feature of the new model, compared with our previous
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semi-kinetic model [9, 10, 11], is the full toroidal geometry that we adopt in evaluating the kinetic

integrals.

2. KINETIC FORMULATION AND BENCHMARKING

We consider the single fluid MHD description of plasmas with a toroidal flow. The core equations,

where the kinetic terms are involved, are written in the Eulerian frame

(γ + inΩ) ξ = v + (ξ ..... ∇Ω) Rφ, (1)

ρ(γ + inΩ) v = -∇..... p + j × B + J × Q - ρ [2ΩZ × v + (v ..... ∇Ω) Rφ, (2)

(γ + inΩ) Q = ∇ × (v × B) + (..... ∇Ω) Rφ, (3)

(γ + inΩ) p = -v  ..... ∇P, (4)

       j = ∇ × Q, (5)

       p = pI+ pk||bb + p⊥(I - bb), (6)

where the variables ξ,v,Q, j,p represent the plasma displacement, perturbed velocity, magnetic

field, current, and pressure tensor, respectively. ρ is the unperturbed plasma density, γ the eigenvalue,

n the toroidal mode number, and Ω the plasma rotation frequency along the toroidal angle φ. The

equilibrium field, current, and pressure are denoted by B,J,P, respectively. R is the plasma major

radius, Z the unit vector in the vertical direction, I the unit tensor.

The kinetic terms enter into the MHD equations via the perturbed kinetic pressure tensors shown

in Eq. (6), where p is the scalar fluid pressure perturbation, and p||(ξ⊥), p⊥(ξ⊥) are the parallel and

perpendicular components of the kinetic pressure perturbations, respectively and b = B/B,B = |B|.
The full pressure tensor p is self-consistently included into the MHD formulation via equation (2).

The perturbed kinetic pressures are calculated from

(7)

where an exp(-iωt +inφ)-dependence is explicitly assumed for the perturbation, with the mode

frequency ω ≡ iγ. The integral is carried out over the particle velocity space Γ. M is the particle

mass, v||,v⊥ are the parallel and perpendicular (to the equilibrium magnetic field) velocity of particle

local bounce motion, fL
1 is the perturbed distribution function defined in the Lagrangian frame and

calculated analytically in [5] and [6].

A derivation resulting in a form of p|| and p⊥, suitable for numerical implementation, is presented

ˆˆ

ˆ

ˆˆ

ˆ

ˆˆ

ˆ

ˆ

p||e
-iwt + inφ = Σ    dΓMv|| fL

e,i

1 p⊥e-iwt + inφ = Σ    dΓ     Mv⊥ fL
e,i

11
2

2 2
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in [12]. A key factor in the kinetic pressure terms is the mode-particle resonance operator

(8)

where ω*N and ω*T are the diamagnetic drift frequencies due to the density and temperature gradients,

respectively. ωE is the E×B plasma rotation, ωb the particle transit/bounce frequency, ωd

the bounceorbit-averaged toroidal precession drift frequency of particles, including the ωE drift.

εk = εk/T is the particle kinetic energy normalised by the temperature. neff is the effective

collisionality. α = 1 for passing particles, and α = 0 for trapped particles. m and l are the Fourier

harmonic indexes over the poloidal angle and the particle bounce orbit, respectively. The latter

implies projecting a time dependent periodic function, associated with the particle periodic bounce

motion, on a basis function exp(ilωbt).

Our self-consistent kinetic formulation neglects the perturbed electrostatic potential, the radial

excursion of particle trajectory (finite banana width for trapped particles), as well as the FLR

corrections to the particle orbit. These effects normally are not important for the RWM. Some of

them are crucial to study the kinetic effects on other MHD modes, such as the internal kink mode.

Although the formulation is presented for thermal particles, for which a Maxwellian distribution

function over the particle energy is assumed, it is relatively easy to extend it to include, for instance,

a fast ions contribution or anisotropic distribution functions.

Different from the self-consistent kinetic approach described above, a perturbative approach has

been implemented in several codes for studying the kinetic effects on the RWM [7, 8]. In [8], the

MHD stability code MISHKA [13] is coupled to the particle orbit-following code HAGIS [14]. The

perturbative approach normally uses the eigenfunction of the ideal kink mode, computed by an

ideal MHD code, as the input to further compute the kinetic energy dWk. The stability of the RWM

is then determined by a dispersion relation derived from the kinetic MHD energy principle [15]

(9)

where δW∞, and δWb are the fluid potential energy without and with a conducting wall, respectively.

The fluid energy includes both the plasma and the vacuum contributions. The normalisation factor

τ*
w is related to the wall eddy current decay time. In a cylindrical geometry, τ*

w = τw(1-b-2|m|) |m|,
with b being the minor radius of the wall, and τw defined as the longest eddy current decay time of

the wall. Both perturbative and self-consistent approaches are realised in the kinetic-MHD code

MARS-K [12]. Figure 1 compares the growth rates of the n = 1 RWM computed by MARS-K and

HAGIS, following the perturbative approach. The no-wall ideal kink eigenfunction is used for

computing the kinetic integrals. The magnetic precessional drift resonance of trapped thermal ions

and electrons with the mode is included in calculations by both codes. A test Solov’ev equilibrium,

with aspect ratio of 5 and nearly circular poloidal plasma cross section, is considered. In addition,

ˆ

n[ω∗N + (εk -3/2)ω∗T + ωE] -ω
nωd + [α(m + nq) + l]ωb -iveff -ω

λml =

*γτw ~
δW∞ + δWk

δWb + δWk
-
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we assume an equal equilibrium temperature between ions and electrons, as well as uniform radial

profiles for the plasma equilibrium density and toroidal rotation’ωE. The latter assumption is

equivalent to a finite real mode frequency w by neglecting the effect of rotation on the ideal kink

mode. The dashed line in the figure indicates the growth rate of the fluid RWM without kinetic

effects and with no plasma rotation. For this specific equilibrium, the drift kinetic resonances do

not provide a significant damping on the mode. Good agreement between MARS-K and HAGIS is

obtained. Equally good agreement is achieved under other assumptions (e.g. with ion contribution

alone) or for other equilibria.

Since the HAGIS code performs a full particle guiding centre orbit integration for the kinetic

integrals, the agreement between two codes indicates that neglect of the particle banana width, an

assumption made in the MARS-K formulation, is reasonable for such a low frequency mode as the

RWM. We point out that, although the benchmark is made on the perturbative approach, it does test

the major part of the self-consistent procedure, which relies on the same kinetic integrals as the

perturbative approach.

3. KINETIC EFFECTS ON RWM STABILITY IN ITER

We apply MARS-K to investigate the drift kinetic effects on the stability of the RWM for ITER

steady state plasmas from Scenario-4 [4]. This scenario has a highly shaped plasma with weak negative

magnetic shear at the plasma core. The target plasma, which is marginally unstable to the n = 1 ideal

external kink mode without a conducting wall, is designed to produce 340MW fusion power at Q = 5.

We scale the plasma pressure up to the ideal-wall (inner vacuum vessel) beta limit, while keeping the

total plasma current at the design value of 9MA. For the sake of numerical  accuracy, we smooth

slightly the plasma boundary close to the X-point, without a significant modification of the stability

limits. (The no-wall bN limit is shifted from 2.45 to 2.33, and the ideal wall limit from 3.65 to 3.62 by

smoothing, according to the MARS-F calculations.) Following the convention, we define an equilibrium

pressure scaling factor Cβ ≡ (βN - βN
no-wall) /(βN

ideal-wall- βN
no-wall), with Cβ > 0 applying above

the no-wall limit. All the results reported in this Section are obtained for Cβ > 0.

Figure 2 shows the fluid potential energy of the ideal kink mode (with or without a perfectly

conducting wall with the ITER inner wall shape) versus Cβ, together with the drift kinetic energy

(both real and imaginary parts) computed byMARS-K following the perturbative approach. The

kinetic energy comes from the precessional drift resonances of the RWM with trapped thermal ions

and electrons (the effect of bounce resonances not being included in this calculation). All the energy

is normalised by the plasma inertia, computed using only the displacement perpendicular to the

equilibrium magnetic surfaces, of the no-wall ideal kink mode. The ion and electron temperatures

are taken equal, which is a reasonable assumption for ITER. The growth rate of the fluid RWM γf is

used as the complex mode frequency ω = iγf in the kinetic integration. We keep the plasma rotation

profile as predicted by the ASTRA simulation [4], but vary the rotation amplitude over a wide

range. Figure 2 shows an example for a very slow plasma rotation, with the central rotation frequency
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at 10-3 of the Alfvén frequency. The precessional drift resonance is expected to provide the dominant

damping at this rotation frequency. The eigenfunction of the no-wall ideal kink mode is used in

evaluating the kinetic integrals. We notice a rather large and positive real part of the kinetic energy

at relatively small Cβ, indicating a strong stabilisation of the mode.

The fluid and kinetic energy perturbations shown in Fig.2 are used to estimate the growth rates

of the kinetic RWM, following the dispersion relation (9). The results are shown in Fig.3. The

perturbative approach predicts a full kinetic stabilisation of the RWM for a large range of Cβ (0

≤ Cβ < 0.8) at slow plasma rotation. We emphasise that the stabilisation comes solely from the

mode resonance with the precession drifts of trapped particles.

For the ITER plasma with relatively slow toroidal rotation, addition of the kinetic contribution

from the mode resonance with particle bounce motion does not modify significantly the pictures

shown by Fig.2 and 3. As an example, figure 4 compares the MARS-K computed kinetic energy

from precessional drift resonance alone, with that from both precessional and bounce resonances. The

perturbative approach is followed for an ITER plasma with Cβ= 0.5. The plasma central rotation

frequency varies from 2 × 10-4 ωA to 2 × 10-2 ωA. Figure 5 compares the growth rate of the RWMunder

the same conditions. The contribution of the bounce resonance damping becomes visible only for the

central rotation frequency ω0 larger than 5 × 10-3
 ωA. This contribution almost vanishes for ω0 

<
 10-3

ωA. The predicted plasma central rotation is less than 2%wA for ITER advanced Scenario-4 [4].

Assuming the rotation profile as predicted for the same ITER plasma, the rotation frequency at the

q = 3 surface is less than 0.25%ωA. (The q = 2 surface is absent for this ITER plasma.) The calculation

results show that, at the rotation speed predicted for ITER advanced plasmas, the particle bounce

resonance damping still plays a minor role. We also notice that the real part of the kinetic energy

stays positive (i.e. stabilising) and increases with decreasing rotation frequency, leading to a strong

mode suppression at very slow rotation.

Figures 6 and 7 compare the 2D plots of the real part of the kinetic RWM eigenvalue, obtained

from perturbative and self-consistent approaches respectively. We vary both the plasma pressure

and toroidal rotation speed. Due to the different ways of obtaining the mode eigenvalue, the growth/

damping is normalised differently between the perturbative and the self-consistent approaches. In

the former, the eigenvalue is estimated using the dispersion relation (9), where a normalisation

factor τ*
w is introduced. Strictly speaking, the perturbative approach does not assume any value for

the wall time, because the ITER wall resistivity is never involved in the calculations. The self-

consistent approach does solve the MHD equations together with the eddy current equations for the

resistive walls, hence the wall time τw is directly involved. However, at a large enough wall time

(i.e. for very highly conducting walls), the plasma inertia becomes negligible, and the mode growth

rate is mainly determined by the wall resistivity, hence the normalised growth rate gtw is almost

independent of tw. (In other words, the MARS-K computed g is inversely proportional to τw.) For

the ITER equilibrium with Cβ = 0.63, the plasma inertia becomes negligible already at tw two

orders of magnitude below the true wall time, which is about 6.2 × 105 τA. For the self-consistent

~

~
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calculations shown in Fig.7, we choose a wall time τw = 6.2 × 104 τA, to avoid computing extremely

small eigenvalues (in Alfvén units), thus to improve the numerical accuracy. This brings a slight

variation to the true growth rate of the kinetic RWM, without modifying the qualitative observations

and conclusions made in Fig.7.

Both perturbative and self-consistent approaches predict a full stabilisation of the mode at low

pressure (Cβ 
<

 0.4) and very slow toroidal rotation (ω0/ωA 
<

 2 × 10-3), as indicated by the black dots in

the figures. However, the perturbative kinetic approach predicts full stabilisation of the mode in a

wider range of the Cβ - ω0 domain. Using the fluid RWM eigenfunction, instead of an ideal kink, in

the perturbative calculations alters figure 6 only slightly. Similar observations have been made in both

analytical calculations [16] and numerical tests for other plasma equilibria [12]. The difference in the

predicted results has been explained partially by the kinetic modification of the eigenmode structure,

and partially by the nonlinear coupling of the RWM eigenvalue via the drift kinetic integrals. For a

plasma close to the ideal-wall kink stability limit and with a rotation speed close to the predicted value

for ITER, only partial stabilisation of the RWM is obtained by both approaches.

A similar conclusion is reached in [7] for an ITER like plasma. (The marginally stable ideal kink

mode eigenfunctions are used in the perturbative calculations made in [7].) Recent perturbative kinetic

simulations for JET plasmas [8] and self-consistent kinetic computations for DIII-D plasmas [17] also

confirm the partial stabilisation of the RWM with drift kinetic effects. However, recent experimental

results in DIII-D point to a complete stabilisation of the RWMin the linear regime and in the absence

of error fields. The latter two conditions, meaning the absence of the RWM coupling to other modes

and to the magnetic braking, are assumptions implicitly made in all the above mentioned numerical

calculations. In the presence of low level error fields, experiments do observe a finite, but very small

critical rotation speed at about 0.3% ωA at the q = 2 surface [1, 2]. The present kinetic theory offers a

close, but not full explanation to the experimental observations. Additional damping physics, such as

the one derived from the nonlinear reactive closure in the advanced fluid theory [18], may be considered.

4. KINETIC EFFECTS ON RFA IN JET

Figure 8 shows the shapes of the plasma boundary and the JET wall on a poloidal plane. The radial

and poloidal location of the Error Field Correction Coils (EFCC) and the pick-up coils (close to the

wall) are indicated by squares. In the simulation, we allow an infinite number of saddle coils along the

toroidal angle φ of the torus, in order to generate (or measure) an exp(inφ) field pattern, with a single

toroidal harmonic n. This is normally not a strong assumption, since 6 saddle coils can generate very

well a dominant n = 1 field. We note that JET has 4 EFC coils along the toroidal angle, which makes

our assumption marginally applicable. The most significant consequence, in comparing the experimental

data with the simulation results, is the necessity of mapping out the equivalent n = 1 contribution from

the experimental total coil current.

The plasma equilibrium is reconstructed from the JET Pulse No: 70200. The equilibrium current

density does not vanish at the plasma edge, leading to an unstable n = 1 peeling mode as the edge q

~ ~
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value approaches integer numbers. A toroidal rotation profile, typical for the JET plasmas from the

RWM experiments, is considered.

Figure 9 plots the measured RFA amplitude for two similar JET Pulse No’s: 70199 and 70200. The

RFA here is defined as the plasma response, measured by the pick-up coils 90o toroidally shifted from

the EFCC current, and normalised by the direct vacuum pick-up field in the absence of the plasma.

For the JET coil configuration, this quantity measures well the plasma response to the external field.

Two peaks occur at bN values about 2.3 and 2.0, respectively, which are considerably below the

estimated no-wall beta limits (about 2.9 and 2.5 respectively). It is unlikely that these two peaks

contain a dominant contribution from the response of stable RWM. Besides, experimental evidence

suggests a correlation between these low frequency RFA signals and the ELM (edge localised mode)

free period prior to the first ELM [19].

We explain the two RFA peaks, shown in Fig.9, by the response of marginally stable, n = 1 ideal

peeling modes. Figure 10 shows the computed RFA amplitude using MARS-K, versus the peeling

mode stability parameter ∆, which measures proximity of the edge q value to an integer number. For

the JET equilibria considered here, qa is close to 6, hence ∆ ≡ qa - 6. In the simulation, we vary the

total plasma current slightly to scan qa, keeping a constant low βN = 1.0. The equilibrium profiles are

also fixed. This allows us to compute the RFA response of the n = 1 peeling mode, which is stable as

∆ exceeds 0. We expect that the contribution of the stable RWM to the RFA is small at this low βN

value. The calculations are performed with two different damping models in the MARS-K code,

namely the parallel sound wave damping [15], and the drift kinetic damping involving the precessional

drift resonances of trapped thermal particles. Both static and standing wave (with a frequency equivalent

to 1.2 × 10- 4ωA) EFCC currents are assumed. The computed RFA amplitude largely agree with the

experimental measurements shown in Fig.9, with the strongest response occurring at ∆ = 0,

corresponding to a marginally stable peeling mode. The RFA response of the peeling mode is not

sensitive to the damping models, in contrary to the RWM, whose stability and response is significantly

affected by the mode resonance with plasma particles or waves. We point out that it is difficult to plot

the computed RFA together with experimental data, due to the fact that, for a given βN, the value of ∆,

which controls the stability of the peeling mode, depends on the precise details of the equilibrium,

especially the current profile at the plasma edge. We also point out that the experimental RFA response,

measured near the no-wall beta limit for the ideal external kink mode, is dominantly caused by the

stable RWM. This is modelled in detail in Ref. [20].

CONCLUSIONS

A full toroidal drift kinetic damping model is self-consistently incorporated into the single fluid

linear MHD formulation, via an anisotropic pressure tensor. This approach allows a self-consistent

modification of the eigenmode structure and eigenvalue due to kinetic effects. Within the

approximations made in this model, it provides a useful tool to study the damping physics of the

unstable RWM, as well as the dynamics of a stable RWM.
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For ITER steady state advanced scenarios, the self-consistent kinetic model predicts a full stabilisation

of the RWM at very slow plasma rotation (less than 0.2% of the Alfvén speed at the plasma centre)

and moderately high plasma pressures (Cβ
 < 0.4). More optimistic results are obtained by the

perturbative approach, where the eigenfunction of ideal kink mode is used to evaluate the kinetic

integrals, and an approximate dispersion relation is applied a-posteriori for estimating the mode

eigenvalue. For a plasma toroidal rotation speed up to the predicted value for ITER, the kinetic

damping of the RWM is mainly provided by the precessional drift resonances of trapped thermal

particles. In this work, we did not include the kinetic contribution from fast particles. The effect of

the plasma collisionality is neglected. A comprehensive prediction of the RWM stability in ITER

may require including all these effects, as well as considering even other damping mechanisms.

We apply the drift kinetic damping model to the resonant field amplification in JET plasmas.

The RFA response, observed in JET experiments at low plasma pressures (below the no-wall beta

limit for an ideal kink), is recovered in simulations, and explained by the response of either a

marginally stable, low n ideal peeling mode, and/or the response of an intrinsically stable RWM,

whose dynamics is affected by the damping models in combination with the plasma rotation.
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Figure 2: The energy perturbations computed by MARS-
K, versus the equilibrium pressure scaling factor Cβ for
the ITER steady state plasma. Plotted are the fluid
potential energy of the ideal kink mode, together with the
perturbatively computed kinetic energy from precessional
drift resonances of the RWM with trapped thermal
particles.

Figure 3:The growth rate of the RWM versus Cβ, under
the fluid description (γf ) is compared with that of the
kinetic RWM following the perturbative approach (γk ).
Both the growth/damping rate and the real frequency of
the kinetic RWM are plotted, for the same ITER plasma
as in Fig.2. γk  is evaluated using formula (9).

Figure 4:Comparison of the kinetic energy perturbations
from precessional drift resonance alone, with that from
both precessional and bounce resonances. The
perturbative approach is followed for an ITER plasma
with Cβ= 0.5. The plasma central rotation frequency
varies from 2×10-4ωA to 2×10-2ωA.

Figure 5:Comparison of the eigenvalue of the kinetic
RWM, affected by the precessional drift resonance alone,
with that by both precessional and bounce resonances.
The perturbative approach is followed for the same ITER
plasma as in Fig.4. The plasma central rotation frequency
varies from 2×10-4ωA to 2×10-2ωA.
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Figure 8: Geometry of the coils used to model the RFA response of the JET plasmas
to the EFCC generated external magnetic fields.

Figure 6:Growth/damping rate of the RWM for ITER
advanced tokamak plasmas, predicted by the perturbative
kinetic calculations. The precessional resonance damping
is included. The black dots indicate a stable RWM.

Figure 7: Growth/damping rate of the RWM for ITER
advanced tokamak plasmas, predicted by the self-
consistent kinetic calculations. The precessional
resonance damping is included. The black dots indicate
a stable RWM.
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Figure 9: The RFA amplitude measured in two similar
JET Pulse No:’s: 70199 and 70200, plotted against the
normalised plasma pressure. The two peaks occur during
the ELM (edge localised mode) events and at beta values
considerably below the no-wall limits.

Figure 10:The computed RFA amplitude versus D, for a
series of JET equilibria reconstructed from Pulse No:
70200. Simulations performed with either a strong
parallel Sound wave Damping model (SD), or a toroidal
Kinetic Damping (KD). Static or standing wave EFCC
currents are considered.
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