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ABSTRACT

 In order to handle the vast amount of information collected by JET diagnostics, which can exceed

10 Gbytes of data per shot, a series of new soft computing methods are being developed. They

cover various aspects of the data analysis process, ranging from information retrieval to statistical

confidence and machine learning. In this paper some recent developments are described. History

effects in the plasma evolution leading to disruptions have been investigated with the use of Artificial

Neural Networks. New image processing algorithms, based on optical flow techniques, are being

used to derive quantitative information about the movement of objects like filaments at the edge of

JET plasmas.  Adaptive filters, mainly of the Kalman type, have been successfully implemented for

the online filtering of MSE data for real time purposes.

1. INTRODUCTION

Tokamak plasmas are complex and nonlinear systems kept out of equilibrium by powerful external

heating systems.  In present day devices, to provide the signals required for the interpretation and

the control of the experiments, diagnostics have become very complex, to the point of sometimes

constituting independent experiments in their own right.  They can also produce impressive amounts

of data; in the last set of campaigns, JET diagnostics have produced a maximum of  more than 10

Gbytes of data per shot and the volume of information is bound to increase in the next generation of

devices like ITER (JET whole data base exceeds already 42 Tbytes of data).  The explosion of data

has become particularly relevant in the last years due to the increased use cameras, both visible and

infrared, some of which can produce Gbytes of data per shot. On the other hand, since hot fusion

plasmas can seldom be directly probed by diagnostics, the inference of internal parameters must be

based on quantities available only outside the plasma, like radiation, escaped particles and external

magnetic fields. This leads to complex inversion problems for the interpretation of the data and to

the need of new methods for data mining. Therefore data analysis for physical studies requires

addressing, among others, at least the following main issues: a) retrieval of the required information

and exploration of the database to identify hidden correlations (see section two) b) efficient image

processing methods (see section  three) c) the development of analysis techniques compatible with

feedback control requirements (see section four). The relevance of the presented methods for the

operation of ITER is revised briefly in the last section five.

2. INFORMATION RETRIEVAL AND DATA MINING

The first step of any analysis procedure consists of retrieving the information relevant to the physical

phenomenon under study. In massive databases like JET’s, this cannot be performed efficiently by

traditional manual methods. Therefore new approaches are being developed to reduce the amount

of data by adaptive sampling [1] and lossless compression [2]. Another significant advance is the

development of techniques to store data according to technical and scientific criteria, instead of

time intervals and pulse numbers. Since visual inspection is a routine activity in plasma physics, a
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“pattern oriented” approach to data analysis is intensively pursued.  In particular “structural pattern

recognition” allows selecting, with a cursor on a simple interface, the signal or some of its parts and

then, in a matter of milliseconds, the algorithms produce the list of shot numbers, time intervals and

signals in which the same or similar structures are present [3,4]. An important recent development

is the successful extension of this approach to images [5].

At the level of analysis, data mining, the problem of extracting useful hidden correlations from

massive databases, is a major time consuming activity for many scientists. Since fusion plasmas, in

addition to being very complex, are also often affected by significant uncertainties, it can be very

difficult to obtain the required “knowledge” from the available signals, even after the relevant

information has been retrieved from the database. The traditional identification techniques, used in

other fields to determine dynamical models of the systems under study, are not easily applicable.

To help in the direction of deriving physical information from the signals and to cope the high level

of uncertainty in the data, several “soft computing” methods are being pursued. Fuzzy Logic [6],

Support vector Machines [7], Classification and Regression Trees (CART) [8] and Artificial Neural

Networks (ANNs) [9] are among the most systematically pursued approaches. The first three are

being introduced to formalise the knowledge of the experts in fields like disruption prediction and

regime identification; the fourth has been used for many years to handle problems for which efficient

algorithms are not available. Recently ANNs have been used as exploratory data analysis tools to

determine whether certain phenomena depend from the historical evolution of the discharge and

not only from the plasma state at a single point in time. In particular they have been applied to the

analysis of disruptions. The nine signals most relevant for disruption description have been identified

by the experts and confirmed with the unbiased and nonlinear CART approach, as described in

[10], and they are summarised in table I.

These signals have been then given as inputs to sets of ANNs: the first ANN of a set has been

trained with only signals belonging to one time slice, the second ANN has been trained also with

the data of the previous time slice and the last with the two previous time slices. The interval

between time slices is typically of 20 ms and is mainly dictated by the resolution of the diagnostic

signals available. The signals of the various time slices have been multiplied by the weights decreasing

with increasing distance to the disruption, to reflect the well known lower predictive power of the

signals at earlier times. One example of the results is reported in figure 1 for a series of ANNs

trained starting 100ms before the discharge. In this case the chosen weights are 1 for the time slice

at 100ms, 0.9 for the time slice at 120ms and 0.8 for the time slice 140 ms before the disruption

(these values have been optimised empirically). The results reported in this paper refer to a database

of 512 discharges has been analysed (67% used for the training)

The ANNs performance improves when the earlier time slices are provided as additional inputs

and, even if the absolute increase is small in percentage terms, the trend is quite consistent and has

been confirmed in all the cases analysed. Indeed various training and test sets have been randomly

chosen to reduce the chances of ay bias in the choice of the data and the error bars in the figures



3

account for the resulting uncertainties in the results. These results seem to indicate that some relevant

information is present in the history of the signals, since the success rate of the ANNs is improved

by including earlier time slices in the list of inputs, which are well known to have per se a lower

information content (and therefore a decrease in the performance of the ANNs would be expected

if this historical information was not in the signals). This is more evident for some specific type of

disruptions, in particular for the ones triggered by a transition from the H to the L mode of

confinement. This is illustrated in figure 2. The success rate improves from 93.5 to 95.5 % introducing

one additional time slice, increases to 95.7 with one more time slice and then starts decaying again.

This is a trend of significant relevance since it is outside the statistical uncertainties. It is also a

phenomenology easy to interpret in terms of historical information, since this type of disruption

depends directly on the earlier evolution of the plasma.

3.  IMAGE PROCESSING

In the last years significant efforts have been devoted to improving JET imaging capabilities, both

in the visible and infrared part of the spectrum. Some new cameras have now the potential to

produce Gbytes of data per shot and therefore new tools are required to analyse and interpret all this

information. One recurrent problem, common also to other devices, consists of trying to quantify

the movement in the three dimensional space of objects seen by a single camera and therefore by a

single point of view. Of course the information available in bidimensional images is insufficient to

derive the displacement of objects in physical space but, if some specific hypotheses are satisfied,

quantitative indications can be derived for example with the method of the so called “optical flow”

[11]. This approach concentrates on the evolution of the optical emission and in certain conditions

this emission can provide indications on the movement of the object generating the emission.   A

potential application is the propagation velocity of filaments detected at the edge of JET ELMy H

mode plasmas as shown in figure 3. Assuming that the filaments move more or less like a rigid

body and that the difference in their position between frames is not too high, the time evolution of

the intensity can be written as:

where I is the intensity of the image pixels and v their velocity. In the hypothesis that the intensity

of the emission remains constant the velocity of the filament can be derived by the relation

The extension of this approach in two dimensions consists of minimising a cost function of the

form [11]:

= ∂t I + v(x) ∇ I
dI

dt

v = - ∂t I
∂xI

E (v) =          ∂t I + ∇ I   2 + α  |∇ vt|2 + |—vy|2 Σs
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This quadratic functional is a conceptually natural extension of the simple monodimensional case

and it is easy to handle numerically since its derivative turns out to be a linear function. On the

other hand it is not a robust quantifier since, being quadratic, it tends to weight excessively any

error in the data (like sources of light, discontinuities in the movements and so forth). Therefore a

different functional, based on Lorentzian functions, has been chosen for the analysis of JET data.

Even if additional upgrades have to be implemented in order to improve the method and confirm

the robustness of the conclusions, the first results are quite encouraging. An example of preliminary

analysis performed with this approach is reported in figure 4, where the movement of a filament

against the background of JET poloidal limiters is shown. The estimated velocity of propagation, in

this specific case, is of the order of 1 km/s.

4. DATA ANALYSIS FOR CONTROL

The higher energy content of the plasmas, the increase in the sophistication of the configurations and

the need to move towards much longer discharges all need the development of more advanced feedback

control schemes. In this framework, the requirements in terms of real time signal processing are also

becoming more stringent. An example of the difficulties and complexities of this task are well

represented by the case of the Motional Stark Effect (MSE), a very important diagnostic to derive the

internal profile of the plasma current. The information about the current is derived by measuring the

pitch angle of the magnetic field (g), which is linked to the amplitudes A of particular spectral

components related to the modulation frequencies of the detection system by the equation [12]:

The diagnostic has become routine at JET and provides a lot of useful information but the quality of

the measurements can be strongly affected by the ELMs. Therefore various approaches have been

attempted to mitigate the negative influence of these instabilities, which are believed to generate

spurious radiation which is collected by the MSE front end optics.

The best filtering so far has been obtained by an adaptive filter of the Kalman type. These

filters minimise the error covariance between the measurements and the linear model (in our

case the model is derived by the hardware configuration of the diagnostics and consists of a

series of sinusoidal frequencies corresponding to the A components of the previous formula). In

our approach, basically, the gain of the Kalman filter is adaptively reduced when the difference

between the empirical signal and the model is too high, indicating the presence of the spurious

radiation due to the ELMs. The quality of the obtained results can be seen in figure 5, which

shows the comparison between the output of the Kalman filter and a single phase lock-in amplifier

with an apodization function implementing the hanning window. The superior smoothing achieved

by the Kalman filter is quite significant and constitutes a very useful improvement in the quality

of the signals provided in real time.

tan (2γ (t))
C21ADC(t) + C22A23(t) + C23A46(t) + C24A40(t)
C11ADC(t) + C12A23(t) + C13A46(t) + C14A40(t)
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5. THE PERSPECTIVES FOR ITER

Many of the methodologies being developed in JET will become routine in ITER, since the problems

presented by the next step devices in terms of data analysis will be more severe. The amount of data

collected is expected to be significantly higher since already the IR cameras for surveillance are

estimated to produce a couple of Tbytes of data per shot. The energy content of the devices will be

also higher and the discharges will have to be sustained for much longer periods. These aspects

make more pressing the need for more sophisticated data analysis tools and feedback schemes.
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SIGNAL NAME UNIT

Plasma current Ipla [A]

Mode Lock Amplitude Loca [T]

Plasma density Dens [m-3]

Total Input Power Pinp [W]

Plasma Internal Inductance Li

Stored Diamag. Energy Derivative dWdia/dt [W]

Safety factor at 95% of minor radius q95

Poloidal beta βp

Net power Pnet [W]

Table I:  List of the signals used as predictors for the ANNs. These quantities have been identified as the most
important or the prediction of disruption using the CART algorithm.

Figure 1: Improved performances of  ANNs with
historical inputs. The colour code indicates the time before
the disruption the various sets of inputs were taken. Train
indicates the training set, Test the independent set of
discharges used for the test and finally All is the sum of
the two sets.

Figure 2: Improved performances of  ANNs with
historical inputs for the case of disruptions triggered by
H-L transitions. The nomenclature in the figure and the
method to randomly select the various sets of discharges
are the same as in figure 1.
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Figure 5: Comparison of the signals obtained with the
Hanning apodization window  moving average (black
line) and Kalman filter(red  line) showing the superior
quality of the second solution.

Figure 3: Filaments seen with the fast visible camera
during a Type 1 ELMy H mode phase.

Figure 4: Application of optical flow to filaments moving
along JET poloidal limiters (Pulse No: 69903).
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