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ABSTRACT

Edge Localized Modes (ELMs) are instabilities occurring in the edge of H-mode plasmas.

Considerable efforts are being devoted to understanding the physics behind this non-linear

phenomenon. A first characterization of ELMs is usually their identification as Type I or Type III.

An automated pattern recognition system has been developed in JET for off-line ELM recognition

and classification. The empirical method presented in this paper analyzes each individual ELM

instead of starting from a temporal segment containing many ELM bursts. The ELM recognition

and isolation is carried out using three signals: Dα, line integrated electron density and stored

diamagnetic energy. A reduced set of characteristics (such as diamagnetic energy drop, ELM period

or Dα shape) has been extracted to build supervised and unsupervised learning systems for

classification purposes. The former are based on Support Vector Machines (SVM). The latter have

been developed with hierarchical and k-means clustering methods. The success rate of the

classification systems is about 98% for a database of almost 300 ELMs.

1. INTRODUCTION

Plasma instabilities should be successfully controlled in order to produce fusion energy efficiently

and without compromising the material boundary. Edge localised modes (ELMs) are one of these

instabilities that are not fully known and further theoretical and experimental analysis are required.

In order to advance in the study of the physics behind ELMs, data-driven methods seem to be

powerful techniques to extract knowledge from the experimental signals without assuming any

kind of hypothesis. This knowledge could be combined with theoretical models for both exploratory

and confirmatory analysis.

This article develops a data-driven approach for the characterization and automatic classification

[1] of ELMs as Type I or Type III [2]. To this end, three steps are accomplished. The first one is to

identify, isolate and extract individual ELMs from JET signals (in the present approach, each

individual ELM is analysed instead of starting from a temporal segment containing many ELM

bursts). Although the physical basis for this assumption is not established, we introduce it as working

hypothesis. The second step is a feature extraction process to represent the ELMs with a minimum

set of relevant characteristics. In the third step, three classifications methods (supervised and

unsupervised) have been applied to classify the ELMs. All computations have been performed by

developing several software tools based on MATLAB.

Section 2 describes the identification and feature extraction; section 3 explains the three

classification methods that we have used; section 4 shows results and, finally, section 5 presents

some conclusions.

2. IDENTIFICATION AND FEATURE EXTRACTION OF ELMS

As it was mentioned above, this article presents a method that analyzes each individual ELM. The

ELM recognition and isolation is carried out using three signals: stored diamagnetic energy

(corresponding to the JET signal MG3F/WPD), line integrated electron density (JET signal KG1V/
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LID4) and Dα (JET signal S3AD/ AD34). ELMs are recognized by an abrupt change in the

diamagnetic energy and a simultaneous drop in the line integrated electron density. As a consequence

of the ELM instability, a typical peaked shape appears in the Dα (Fig.1). At present, the isolation

procedure of ELMs is carried out in a manual way.

Once individual ELMs are identified, the feature extraction process must be accomplished. It

consists of extracting features or attributes that are of distinctive nature. The set of attributes allow

achieving a proper representation of the ELMs that will be used in the classification process.

Typically in classification processes, the selection of both the number of features and the specific

ones that best represent the objects is problem dependent. It requires specific knowledge about the

system to classify. In practice, a larger than necessary number of feature candidates is generated

and then the ‘best’ of them are adopted.

In the case of ELMs, features have been chosen with the aim of incorporating some knowledge

of the experts of ELMs. The diamagnetic energy has been the reference signal and, in particular, the

drop in this magnitude has been selected. In the first approximation, Type I ELMs seem to show

larger drops in the diamagnetic energy than Type III ELMs. Another attribute is the ELM period.

The repetition frequency is often used as a characterisation parameter of ELM types. Again in the

first approximation, high/low rates are assigned to Type III/Type I ELMs respectively. Therefore,

as individual ELMs are only considered in this article, the ELM period has been selected. Finally,

a empirical criterion has been used. A simple visual inspection of the Dα waveform suggests the

presence of higher frequency components in this signal for the case of type III ELMs.

Quantifying the latter aspect in a single value has not been a straightforward task. Different ways of

representing the shape of the Dα emission with a single parameter have been tested (for example

standard deviation of the Fourier spectrum, signal power of high frequency components, and crest

factor). The best results in terms of success in the type I/type III classification process have been

achieved with the so called Crest Measure (CM) that we have defined as a ratio between the Crest

Factor (CF) and the number of Relevant Samples (RS) by means of:

CF is the crest factor that is defined as the ratio of the peak (crest) value to the Root Mean Square

(RMS) value of a waveform.

If the temporal evolution of the Dα signal during the ELM is represented by the samples {y1, y2,...,

yn}, then the Peak Level = max {y1, y2,..., yn} and the Root Mean Square is RMS =
 y1 + ... + yn 

n

2 2

The Number of RS is defined as the number of signal samples which exceed a Threshold Level (Fig.

2). This threshold has been empirically determined as

Threshold Level = (Peak Level + Final Level ) / 3

CF + Number of RS

2
CM =

PEAK LEVEL

RMS
CF =
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where the Final Level is the stationary level reached by the Dα signal.

3. CLASSIFICATION METHODS

After feature extraction, the classification methods must group the ELMs into two subsets: Type I

and Type III. The creation of a classification system implies the use of training data and test data.

Training data are needed to define the classes or categories that define the classification system.

Test data are used to estimate the success rate of the classification system developed with the

training data. JET signals have been analysed with the different techniques explained below.

3.1. SUPERVISED METHODS: SUPPORT VECTOR MACHINES

In supervised methods, both the number of classes (in the present case two classes, Type I and Type

III) and the category for the training samples (each training data belongs to a well-known class:

Type I or Type III) are known. Once the system is trained, it is ready to estimate the category of

input data.

Support Vector Machines (SVM) has been used as supervised method for ELM classification.

SVM is a universal constructive learning procedure based on the statistical learning theory [3]. The

SVM maps input data into a high-dimensional space using a non-linear function. Once input data

are mapped into the high-dimensional space, linear functions with constraints on complexity (i.e.,

hyper-planes) are used to discriminate the inputs, and a quadratic optimization problem must be

solved to determine the parameters of these functions.

3.2. UNSUPERVISED METHODS

In unsupervised methods, only input data are given to a learning system and there is no notion of

the category during learning. The outcomes of unsupervised methods are both the number of classes

and the assignment of each training data. Two different techniques have been used with ELMs: K-

means and hierarchical.

3.2.1. K-MEANS

K-means [4] follows a simple and easy way to classify a given data set through a certain number of

clusters (assume k clusters) estimated after the training process.

The algorithm is composed of the following steps:

1. Place K points into the space represented by the objects that are being clustered. These points

represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the

objects into groups from which the metric to be minimized can be calculated.

3.2.2. HIERARCHICAL

Given a set of N items to be clustered, and an N×N distance matrix, the basic steps of hierarchical

clustering [5] are:
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1. Start by assigning each item to a cluster, so that if you have N items, you now have N clusters,

each containing just one item. Let the distances (similarities) between the clusters be the

same as the distance (similarities) between the distances they contain.

2. Find the closets (most similar) pair of clusters and merge them into a single cluster, so that

now you have one cluster less.

3. Compute distances (similarities) between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

Of course there is no point in having all the N items grouped in a single cluster but, once the

complete hierarchical tree has been obtained, k clusters can be estimated by cutting the k-1 longest

links in the tree.

4. RESULTS

Each classification method presented in Section 3 (SVM, K-means and hierarchical) has been applied

to 265 ELMs isolated from JET signals [6]. A total of 122 ELMs correspond to discharges used as

training data (97 of type I and 25 of type III). Figure 3 summarizes the numerical ranges of each

feature for this training set.

The test data consists of 143 ELMs. It is worthwhile to point out that similar results are obtained

when using any of the classification methods, either supervised or unsupervised. In both cases the

number of classes that provides the vast classification performance is two. Moreover, the success

rates with different techniques shown in Table 1 allow concluding that feature selection adopted is

quite robust. In particular, using K-means and hierarchical, the percentage of signals included in

each cluster is the same.

With SVM we obtained one set of 238 ELMs of Type I and one set of 27 ELMs of type III. With

K-means and hierarchical we obtained two set: 237 ELMs of Type I and 28 of Type III. Only one

ELM belonging to the test data, and wrong classified by the unsupervised methods, is moved when

using SVM from one class to another.

Figure 4 shows the results for the K-means classification that are very similar to the ones obtained

with SVM and hierarchical. As it can be observed by inspection of the figure, ELMs of Type I have

bigger drop than those of Type III but this characteristic is not good enough to absolutely differentiate

between them.  Moreover, the period is also not a deciding feature for the classification process.

However classification depends strongly on the Crest Measure feature. In fact, the same success

rate showed in Table 1 is obtained if just the Crest Measure is the only feature under consideration,

i.e. no improvement in the classification is obtained by using the other parameters. One parameter,

the Crest Measure, is enough to discriminate ELMs of Type I and Type III. On the other hand,

period and drop cannot be used by themselves to obtain a good classification.

It should be emphasized in the analysis of the results that it is necessary to use the CM instead of

the CF in the classification process. The CF is not good enough for the discrimination of the two types

of ELMs. This fact denotes that the Number of RS is an important component in the CM feature.
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CONCLUSIONS

In this paper we presented a method for the classification of ELMs based on individual ELM

analysis. Although the physical basis to this approach is not established, the method seems to work

on a restricted database of 300 ELMs. In addition, the selected dataset has been classified with very

high success rates and a very low dimensionality (in fact in can be reduced to a single feature, the

Crest Measure). The several methods used (supervised and unsupervised) group the same signals into

the same sets which means that the features selected are robust enough to represent the ELM instability.

On the other hand, it should be noted that the database is not completely general and a comparison

with a more extended database is needed in order to draw definitive conclusions on the approach

proposed here. More difficult cases could require the development of additional analysis to take

into account a wider range of conditions, for example power density and collision regimes.
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Table 1. Rate of success in the classification.

       Type I      Type III

K-means 98% 93%

Hierachical 98% 93%

SVM 98% 96%
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Figure 1: WPD, LID4 and AD34 signals for Pulse No:52014.

Figure 3: Variation range of features for the training set.Figure 2: Crest Measure feature.
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Figure 4: K-means results (Type I ‘*’ and Type III ‘o’).
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