

EFDA-JET-CP(08)03-23

S.E. Sharapov, F.M. Poli and JET EFDA contributors

Magnetic Turbulence Associated with Confinement Changes in JET

"This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

"Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

Magnetic Turbulence Associated with Confinement Changes in JET

S.E. Sharapov¹, F.M. Poli² and JET EFDA contributors*

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

¹EURATOM-UKAEA Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK ²Department of Physics, University of Warwick, Coventry CV4 7AL, UK * See annex of M.L. Watkins et al, "Overview of JET Results", (Proc. 21st IAEA Fusion Energy Conference, Chengdu, China (2006)).

Preprint of Paper to be submitted for publication in Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, Crete, Greece (9th June 2008 - 13th June 2008)

INTRODUCTION

Depending on auxiliary power, magnetic configuration, and impurities, plasmas in Joint European Torus (JET) exhibit L-H or H-L transitions at the plasma edge [1] and formation of Internal Transport Barriers (ITB) in the plasma core [2]. Amplitude, frequency, and the characteristic wave-vector of electrostatic turbulence were investigated on JET in relation to transport theories by measuring density fluctuations with reflectometry [3]. Some transport theories, such as the "accretion" theory of spontaneous toroidal plasma rotation [4], or the theory of radiative impurity modes [5], predict also changes in sign of the phase velocity of prevalent turbulent modes, from the ion drift direction to electron drift direction. In order to identify the sign, phase shifts between signals measured at spatially separated points have to be determined. Toroidally separated Mirnov coils [6] measuring the magnetic component of the perturbations, dB_{POL}/dt, were used for the sign measurements on JET. This paper shows that the phase magnetic spectrograms exhibit a strong correlation between the types of the magnetic turbulence and confinement regimes in JET with NBI heating. This correlation shows a possibility for MHD spectroscopy similar to [6, 7], which could identify the confinement regimes from the measured magnetic turbulence spectrum

1. EXPERIMENTAL SETUP AND TYPICAL MAGNETIC SPECTROGRAMS DURING H-L AND L-H TRANSITIONS.

A high resolution array of toroidally separated Mirnov coils ($\phi_1 = 2.94^\circ, \phi_1 = 13.11^\circ, \phi_3 = 18.74^\circ$) is used for measuring the phase shifts / direction of the wave propagation. Amplitudes down to $|\delta B/B_0| \approx 10^{-8}$ and toroidal mode numbers in the range -20 < n < 20 can be measured at a sampling rate 1MHz [6]. Figure 1 shows schematically directions of magnetic field, current, NBI, ion and electron drift waves. Figure 2 shows a typical amplitude magnetic spectrogram measured with a single Mirnov coil. Figure 3 shows the colour-coded phase spectrogram derived from toroidally separated Mirnov coils. It is seen that the magnetic "noise" in Fig.2 is not white noise, but it consists of modes with welldetermined toroidal mode numbers, which occupy a broad frequency range. The toroidal mode numbers are negative, -12 < n < -2, before 21s, and become positive, $n\approx 1$, after 21s.

As Figure 1 shows, negative n's correspond to the phase velocity of the wave in countercurrent (i.e. in electron drift) direction, while positive n's correspond to the phase velocity of the wave in co-current (i.e. in ion drift) direction. This abrupt change in the sign of magnetic turbulence occurs at the time of H-L transition. The correctness of the phase spectrogram shown in Fig.3 obtained with Fourier transform is further confirmed by performing a wavelet analysis [8].

Abrupt changes in the magnetic turbulence are also observed during transitions from Type-III ELMy H-modes to Type-I ELMy H-modes. Figure 4 shows that the signs of the propagation of the prevalent turbulent modes remain negative (counter-current propagation corresponding to electron drift waves), but both toroidal mode numbers and frequency bands of the magnetic turbulence change from $n \approx -10$, 0 < f (kHz) < 30, to $n \approx -15$, 50 < f (kHz) < 80.

Magnetic turbulence during ITB formation: ITB formation is found to associate with a sudden build-up of magnetic turbulence with positive n (co-current propagating modes corresponding to the ion drift direction). Figure 5 shows how the turbulence with n = 1 - 10 builds up at the time of ITB formation at 5.8s, and how it occupies the frequency range up to 200kHz–250kHz in about 100msec. In discharges with ITB formation, followed by an External Transport Barrier (ETB) causing transition to type-I ELMy H-mode, co-current magnetic turbulence with n > 0 builds up first, and it changes sign of the wave propagation to n < 0 at the time of ETB formation. Figure 6 shows an example of such case, in which an ITB formed at 6 s is associated with a build-up of n > 0 turbulence in the frequency range up to 140kHz, while the formation of ETB at 6.5s is associated with n < 0 magnetic turbulence in the same frequency range.

CONCLUSIONS

Phase spectrograms of magnetic perturbations measured with Mirnov coils show a very good correlation between the measured n of the waves and transport transitions in JET plasmas with NBI heating. L-H transitions are found to associate with change in the sign of the phase velocity of prevalent turbulent modes: in L-mode the modes have cocurrent, n>0, propagation in ion drift direction, while in H-mode the modes have countercurrent, n<0, propagation in electron drift direction. This directivity was predicted in [4]. Within H-mode, transitions from type-I ELMs to Type-III ELMs shown in Figure 4 are associated with abrupt changes in the prevalent mode numbers: Type-I ELMy H-mode has higher-n counter-current, n<0, prevalent modes, while type-III ELMy H-mode has lower mode numbers. ITB formation is found to be associated with a sudden build-up of n>0 magnetic turbulence. Taking into account that this build-up of the magnetic turbulence coincides in time with a suppression of electrostatic turbulence [3], this may indicate that ITB formation is associated with energy transformation from $\phi \rightarrow A_{\parallel}$ (from electrostatic to electromagnetic) rather than with an overall wave energy decrease. In summary, we underline that the observed correlation between magnetic turbulence and transport properties of the plasma can reliably be used for MHD spectroscopy of the confinement regimes.

ACKNOWLEDGMENTS

The authors thank B. Coppi for support and encouragement, and L.-G. Eriksson, A. Fasoli, and W. Suttrop for fruitful discussions. This work has been conducted under the European Fusion Development Agreement and partly funded by Euratom and the UK EPSRC. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

REFERENCES:

- [1]. M. Keilhacker et al., Nucl. Fusion **39** (1999) 209
- [2]. C. Gormezano et al., Phys. Rev. Lett. 80 (1998) 5544
- [3]. G.D. Conway et al., Phys. Rev. Lett. 84 (2000) 1463
- [4]. B. Coppi, Nucl. Fusion 42 (2002) 1
- [5]. M. Tokar et al., Phys. Rev. Lett. 84 (2000) 895
- [6]. A. Fasoli et al., PPCF 44 (2002) B159
- [7]. S.E. Sharapov et al., Phys. Lett . A289 (2001) 127
- [8]. F. Poli et al., PPCF, submitted (2008).

Figure 1: Sinusoidal signals measured at different toroidal angles, φ_1 and φ_2 , at the same time and at same frequency are shifted in phase by α .

Pulse No: 52309: Toroidal mode numbers 17 80 12 Frequency (kHz) 7 60 2 +n=0 40 -3 -8 20 -13 0 14 P_{NBI} (MW) NBI 12 10 8 H-L Dα 1G07 20 19 21 22 Time (s)

Figure 2: Magnetic spectrogram showing amplitude of magnetic perturbations. Magnetic noise of amplitude $\delta B \sim 10^{-7} - 10^{-6}$ T is seen up to 80kHz. JET Pulse No: 52309. B = 2.7 T, $I_p = 2.5$ MA

Figure 3: (Right) Top: Magnetic spectrogram showing phase of magnetic perturbations in the same case as Fig.2. Abrupt change of magnetic broad-band turbulence from n<0 to n>0 occurs at the H-L transition at ~21s. Bottom: NBI power step-down waveform and D α signal.

Figure 4. (Left) Top: abrupt changes in toroidal mode numbers of the magnetic turbulence seen in JET with transitions from Type-I ELMy H-modes to to Type-III ELMy H-modes. Bottom: The changes correlate with sawteeth triggering transitions to Type-I ELMy H modes, while back transitions correlate with Type-I ELMs.

Figure 5: Top: Phase spectrogram showing a build-up of n>0, n=1-10, magnetic turbulence in a broad-band frequency range, up to 250kHz, at 6s when ITB is triggered. Bottom: NBI and ICRH power waveforms and T_e from multi-channel ECE in JET Pulse No: 51976. B=3.45 T, I_p =2.5MA.

Figure 6. Top: Phase spectrogram showing a build-up of n>0, n=1-10, turbulence at 6s when ITB is triggered. The sign of turbulence changes to n < 0 at 6.5s when ETB forms and transition to H-mode occurs. Bottom: T_e and D_{α} signal in JET Pulse No: 51573. B=2.6 T, $I_P=2.2MA$.