

EFDA-JET-CP(08)01/02

S. Dormido-Canto, G. Farias, J. Vega, R. Dormido, J. Sánchez, N. Duro, H. Vargas, A. Murari and JET EFDA contributors

Intelligent Classifier for JET Plasma Configurations

"This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

"Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

Intelligent Classifier for JET Plasma Configurations

S. Dormido-Canto¹, G. Farias¹, J. Vega², R. Dormido¹, J. Sánchez¹, N. Duro¹, H. Vargas¹, A. Murari³ and JET EFDA contributors*

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

 ¹ Dpto. de Informática y Automática - UNED. C/ Juan del Rosal 16, 5^a. 28040 Madrid, Spain.
² Asociación EURATOM/CIEMAT para FUSIÓN. Avda. Complutense 22. 28040 Madrid, Spain.
³ Consorzio RFX-Associazione EURATOM ENEA per la Fusione. I-35127 Padua, Italy.
* See annex of M.L. Watkins et al, "Overview of JET Results ", (Proc. 21st IAEA Fusion Energy Conference, Chengdu, China (2006)).

Preprint of Paper to be submitted for publication in Proceedings of the HTPD High Temperature Plasma Diagnostic 2008, Albuquerque, New Mexico. (11th May 2008 - 15th May 2008)

ABSTRACT.

The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on Support Vector Machines (SVM) has been developed. Each configuration is described by 12 geometrical parameters. A multi-class system has been developed by means of the one-versus-the-rest approach. Results with 8 simultaneous classes (plasma configurations) show a success rate close to 100%.

1. INTRODUCTION

The shape of the last flux surface is an essential ingredient in the definition of the JET operation scenarios and several ones can be present during a discharge. Some kinds of data analysis are sensitive to the plasma configuration (for example, to the location of the X-point and strike points) and, therefore, an automated recognition (classification) system can be very helpful.

Developing classifiers is a learning problem. It means the identification of different classes to show the grouping of the data. The clustering can be carried out by exploiting a priori known information. This is known as supervised learning. Otherwise, if the data clustering does not use any prior information it is called an unsupervised classification method.

This article describes the development of an intelligent classification system for JET plasma configurations. It is a supervised system based on Support Vector Machines [1]. Section 2 reviews SVM as technique for intelligent classification problems. It should be noted that any particular application of classification with SVM must address three key phases: feature extractions, training and testing. These three phases for the present classification system are described in Section 3. Section 4 shows results for two different classifiers: one with 3 classes and one with 8 classes systems. Section 5 is devoted to the final discussion.

2. SUPPORT VECTOR MACHINE FOR CLASSIFICATION

SVM is a universal constructive learning procedure based on statistical learning theory. SVM maps input data into a high-dimensional space using a non-linear function. Once input data is mapped into the high-dimensional space, linear functions with constraints on complexity (i.e., hyperplanes) are used to discriminate the inputs, and a quadratic optimization problem must be solved to determine the parameters of these functions. Nevertheless for high-dimensional feature spaces, the large number of parameters makes this problem intractable. For this reason, duality theory of optimization is used in SVM to make the estimation of parameters in the high-dimensional feature space computationally affordable. The process time to classify in SVM is fast due to the matrix calculus in the algorithm.

The linear approximation function corresponding to the solution of the dual problem is given in the kernel representation, K(x,x'), and it is called the optimal separating hyperplane. The solution in the kernel representation is written as a weighted sum of the support vectors, that is, a subset of the training data.

3. STAGES IN A CLASSIFICATION SYSTEM

3.1. FEATURE EXTRACTION

The description of signals in fusion databases is difficult to implement because there is no general solution for extracting generic features. So, feature extractors must be developed to extract the domain specific features most suited to the subsequent classification task. In the present case, the boundary of the last flux surface can be used to identify the plasma configuration of discharges. Therefore, geometrical parameters of the boundary have been chosen as feature vectors (table 1). These parameters were proposed by the experts.

3.2. TRAINING AND TESTING STAGES

The process of using data to determine the classifier is referred to as "training" of the classifier. Test data allow performing the "evaluation" of the classification system. Evaluation is important both to measure the performance of the system and to identify the need for improvements in its components (for instance, to add new attributes to the feature vectors or to eliminate redundant ones).

4. CLASSIFICATION SYSTEMS

Results with two classification systems based on geometrical parameters of the last flux surface and SVM are presented in this Section. In order to evaluate the approach, two different classifiers have been applied to some of the configurations stored in the JET database. These configurations belong to one of the following classes: HIXR_GB, StandardFat, HC_SFE_LT, SEPTUM, VLPC_SWEEP, D1F_C_SFE_LT, V_LFE_LT, D1Z_XFORM and VH_3M5_HT3 [2].

The first experiment has been trained to discriminate discharges belonging to the following three classes: VH_3M5_HT, HIXR_GB†and†SEPTUM. Figure 1 shows examples of these types of configurations. It is important to emphasize that the shapes HIXR_GB†and†SEPTUM are quite similar in terms of geometrical parameters

At first, each configuration is defined by 12 geometrical parameters (Table 1). Figure 2 shows that a simple visual inspection of parameters can be enough to solve the easiest cases. For the three above configurations, it is possible to discard parameters that do not contribute to the discrimination and to identify the ones that provide the most discriminative power: *rig* and *zmag*. Therefore, for the three classes problem (VH_3M5_HT, HIXR_GB and SEPTUM), two-dimensional feature vectors (parameters *rig* and *zmag*) perfectly identify three clusters that correspond to the three different configurations (Fig.3).

Figure 3 also shows three straight lines separating each class from all the others (linear discriminant functions). In this case, using a Support Vector Machine classifier, in its simplest linear version, we obtain the hyperplane that maximizes the margin of separation, therefore minimizing the misclassification risk.

The dataset for the three classes problem is made of 199, 39 and 17 configurations respectively for each class. The training set is composed by 60% of the configurations and the testing set by 40%

obtained from the JET database. The percentage of success is 100% for all the classes.

For the second classifier the number of magnetic configurations considered is 8. The class with a greater number of cases (VH_3M5_HT3) has been discarded to build a more uniform dataset. The dataset is composed of 39, 9, 24, 17, 45, 24, 40 and 12 configurations for each class. In this case, we use as feature vectors all the parameters described in Table 1. The percentage of correct classifications is illustrated in Table 2 for three different kernels.

DISCUSSION

SVM is a very competitive method to classify JET configurations. Although apparently a simple visual inspection could be enough to discriminate a limited number of different discharges, when a bigger number of categories are considered, it is necessary to resort to a general purpose system as SVM. It should be emphasised the high success rate in spite of the reduced number of training data. Results with 8 classes are promising even for a future real-time application of the method.

ACKNOWLEDGMENTS

This work, supported by the European Communities under the contract of Association between EURATOM/CIEMAT, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

REFERENCES

- [1]. Vapnik V. The Nature of Statistical Learning Theory (2nd edn.), Springer. 2000.
- [2]. http://users.jet.efda.org/pages/plasma-ops/plasmaopshome.htm

Parameters	Description	Parameters	Description
elon	elongation boundary	rog	radial outer gap
rgeo	major radius	rig	radial inner gap
rxpl	radial coordinate lower X-point	rmag	magnetic axis r coordinate
zxpl	z coordinate lower X-point	zmag	magnetic axis z coordinate
tril	lower triangularity	elax	elongation at magnetic axis
triu	upper triangularity	volm	plasma volume

Table 1: Geometrical parameters of the boundary of the last flux plasma surface.

	Kernel		
	Linear	Radial basis	Exponential radial basis
HIXR GB	96.6	95 3	96
StandardFat	100	100	100
	04	05 5	02.2
HC_SFE_LI	94	93,3	92,2
SEPTUMI	95	90	95
VLPC_SWEEP	100	100	100
DIF_C_SFE_LI	100	100	100
V_LFE_LT	98	96,2	98,7
DIZ_XFORM	87,5	90	87,5

Table 2: Results for the second classifier.

Figure 1: (a) VH_3M5_HT, (b) HIXR_GB and (c) SEPTUM

Figure 2: Geometrical parameters.

Figure 3: Three classes described by two-dimensional feature vector (zmag and rig).