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ABSTRACT.

There is currently a paradigm shift taking place in the field of scientific methodology. Methods for

the extraction of underlying physics from observations and the falsification/confirmation of scientific

hypothesis are undergoing a significant change through the use of a generic approach to inference

from observations: so called ‘Bayesian’ Probability Theory. The first part of this paper will outline

and exemplify how this method is changing data analysis in nuclear fusion: How all uncertainties

(systematic, statistical and model uncertainties) can be treated in a unified way, and how data

analysis methods can be understood and unified through probability theory. The practical advantage

here for nuclear fusion experiments is the possibility to utilise this method for a more comprehensive

understanding of the internal state of fusion plasmas as inferred from measurements from multiple

heterogeneous diagnostics. The second part of the paper will discuss architectural issues relating to

the very complex analysis systems that might emerge from a systematic application of this method

in large scientific experiments.

1. INTRODUCTION

Large nuclear fusion experiments pose a formidable data analysis challenge, related to the fact that a

hot fusion plasma can seldom be directly probed by diagnostic equipment. The inference on internal

parameters, such as particle densities, temperatures and electromagnetic fields, must therefore

usually be made from quantities available only outside the plasma: radiation, escaped particles and

external magnetic fields. This leads to comparably complex inversions, relying on detailed physics

models for the processes that generate the measured quantities. It will be shown how by reformulating

the inference problem of each diagnostic as a Bayesian inference on a common unknown physics

‘state’, measurements from different diagnostics can be combined for optimal inference on this physics

state, without information losses. At the core is a new inversion method, Bayesian current tomography,

to infer the internal magnetic field that provides the common coordinate system for the mapping of

other diagnostic information. This model can then be fully integrated with individual Bayesian models

of non-magnetic diagnostics to make optimal inference on further physics quantities.

The combination of a large number of diagnostic instruments for a joint Bayesian inversion leads

to challenging architectural problems. A large nuclear fusion experiment has on the order of 100

diagnostic instruments and at least as many computer codes for modelling different aspects of the

plasma. Each diagnostic is on its own a fairly complex piece of equipment with associated statistical

and systematic uncertainties, viewing geometry, calibration procedures and associated physics models.

The second part of this paper deals with the architectural problems that arise from a consistent application

of this method of joint Bayesian analysis in fusion experiments. There will be two parts to the

architecture discussed: The first part is a framework that allows a unified way of specifying general

diagnostic models and their relationship to physics models. The second part is a framework dealing

with unification of the calling, combination and parallelisation of modelling codes.
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3. BAYESIAN INFERENCE

The foundation of so called ‘Bayesian’ probability theory is the association of an uncertain ‘state of

knowledge’ with a probability or probability distribution. This view on probability [1,2] differs

from the traditional ’frequentist’ interpretation where a probability is viewed as the relative frequency

of an event in the limit of an infinite number of trials. The Bayesian view accommodates a natural

way of representing uncertainties that do not fit easily within a frequency interpretation, such as

systematic uncertainties and model uncertainties. The real power of the Bayesian approach though,

is that it seems to capture the very process of inference from data: the updating of one’s knowledge

about a given model or sets of models in the light of new observations, thereby making it a candidate

for a theory of scientific inference in general [3].

The starting point of Bayesian inference on some unknown parameters of a model is a probability

distribution p(W), capturing the a priori knowledge one might posses about the otherwise unknown

parameters, W, of a physics model. The information provided on the unknown parameters from

some later observed data D, is then incorporated into the analysis through a second probability

distribution that represents the likelihood of this particular data given any value of W: p(D|W).

These two pieces of knowledge, expressed as probability distributions, can now be combined using

standard probability theory, to give the posterior distribution of W, representing what can be known

about the model parameters after the observation of this particular dataset:

(1)

where (D) =  ∫ p(D|W) p(W) dW is a normalisation constant independent of W. Equation (1) now

captures everything we can know about the model parameters after the data has been observed, and

is referred to as Bayes formula.

We now assume that we have a large number of diagnostics, collecting different type of data

simultaneously during an experiment. Each diagnostic provides a set of measurements Di that provides

information on different, possibly overlapping, parts of the vector of unknown physics parameters W

– the unknown physics–‘state’ of the plasma. We will now have one single prior distribution, p(W),

but several likelihood distributions, one for each Di : p(Di|W). If we now assume that the measurement

noise on all measurements from all diagnostics are independent (that is, given a particular physics

state W, the measurements are independent), the total likelihood will become

(2)

and the posterior distribution on the set of all unknowns will be:

(3)

p(D⎪W)p(W)

p(D)
p(W⎪D) =

p({Di}⎪W) =       p(Di⎪W)∏
N

i=1

p(W)       p(Di ⎪W)

p({Di})
p(W ⎪{Di}) =

∏
N

i=1
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which is the formula for integrated analysis of multiple diagnostics. This posterior distribution

captures all that can be known about the physics parameters given the information from all diagnostics

taken together, capturing interdependencies that occur because each diagnostic might give

simultaneous evidence on overlapping parts of the vector W. Two examples of Bayesian diagnostic

modeling for fusion diagnostics can be found in [4,5], and implementations of integrated Bayesian

modeling in [6,7,8].

In practice, the vector W might include so called nuisance parameters, uncertain parameters

(such as calibration factors, geometrical parameters etc – usually regarded as–systematic

uncertainties) that contribute to the uncertainty of our model parameters, but otherwise are not

interesting to us. If we single those out by setting W = {WM, WN } (WM ‘model’ parameters,’ WN -

‘nuisance’ parameters), we can calculate their influence on our model parameters by integrating the

posterior over the nuisance parameters:

(4)

Usually, such marginalisations over parameters will have to be carried out also over part of the

model parameters, to arrive at 1D or 2D marginal distributions of quantities of interest. Such marginal

distributions will have captured everything that can be known about those parameters, taking into

account the uncertainties of all other free parameters in the system, whether they represent nuisance

parameters or physics parameters. Such high dimensional integrals over parts of the posterior

distribution usually represents the main computational effort of a Bayesian scheme, and stochastic

integration techniques such as Gibbs sampling or Markov Chain Monte Carlo (MCMC) often have

to be employed. Often though, analytical approximations of the posterior distribution around the

maximum posterior value (MAP) can give satisfactory results.

3. BAYESIAN ANALYSIS FOR NUCLEAR FUSION

A major stumbling block in the implementation of (3) for nuclear fusion experiments is that physics

parameters usually need to be mapped to a common ‘magnetic’ coordinate system, defined by the

magnetic field line geometry inside the plasma. Since the internal magnetic field is continuously

changing, it itself has to be inferred from (external) measurements. Through this mapping, the

inferred coordinate system thus links a large number of diagnostics, and those other diagnostics

therefore indirectly provide information on the magnetic geometry, even if their traditional ‘role’ is

to measure some other physics parameter. To provide a reconstruction of the magnetic geometry

that will also accommodate such interdependencies we have developed a

4. ARCHITECTURE FOR INTEGRATED ANALYSIS

Even though the Bayesian scheme for integration of diagnostic measurements (3) looks clean and

simple, the reality behind the likelihood functions in (2) can be tremendously complex. It usually

p(WM⎪{Di}) =     p(WM ,WN⎪{Di})dWN
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includes the forward function of the diagnostic, which maps the physics parameters to an expected

measurement. This function includes all calculations connecting the physics of the plasma to the

final measurement. It also includes all types of uncertainties for that specific diagnostic: calibration

factors, positioning parameters etc. The more complex diagnostics can have dependencies on

hundreds of external parameters.Assumptions at any level of these models, from physics to the

positioning of diagnostic lines of sight, can influence the final result in the joint analysis. For such

a complex utilisation of available information to work and be manageable, a generic architecture is

mandatory. The rest of this paper is therefore devoted to an overview of two architectural parts that

have been developed to handle this complexity. The first, MINERVA, is a generic framework that

formalises the specification of diagnostic models, parametric dependencies, and their relationship

to physics models. This framework allows optimal seamless combination of diagnostics and optimal

Bayesian inference on physics models evidenced by heterogeneous diagnostics incorporated into

the framework.

All parametric dependencies of a diagnostic or a physics model are ‘visible’ to the framework

and allows a decoupling between diagnostic models, physics models, data sources, and specific

inversion algorithms (such as MAP optimization, MCMC etc). This makes it possible to have

control over every single parameter in the combined model, and through the usage of well defined

interfaces, underlying physics models can even be swapped. Figure 3 shows the main principle

behind the workings of this framework, which has been used to implement the current tomography

described in section 3. Forward Mode Inverse Mode.

The unified handling of diagnostic models as described above is a solution to only one part of

the problem. The other has to do with the many different physics calculations that need to be

performed for the definition of the physics models in the framework. These are often already

implemented in large legacy codes, typically written as stand-alone FORTRAN programs. For

example, the current tomography model relies on a 3D magnetostatic code (MAG3D), written by

the authors, to calculate magnetic field and vector potentials from different types of current elements.

We believe that unification of the process of the programmatic interaction with these codes would

lead to advantages also outside the scope of Bayesian analysis, since those codes would be easily

accessible from any environment for other uses. The practical process of accessing, understanding

and running these legacy codes is currently complicated and creates a barrier for the general user,

not an expert of a specific code. The possibility of being able to combine such codes with each

other, the output of one code being used as input or partial input to other codes – possibly in an

iterative fashion, would lead to much faster development and scripting of advanced modelling

scenarios. Currently, to combine just a couple of codes with each other could amount to months or

even years of work. The SOFI (Service Oriented Fusion Initiative) project is trying to remedy this

by building codes into a so called ‘Service Oriented’ Architecture (SOA), using Web Service

technologies. In this model, all data communicated between codes are strictly typed in language

independent XML Schema (XSD) structures and the functional interface between codes and between
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users and codes are defined using language independent XML WSDL (Web Service Description

Language) documents [10]. In this way the complete interaction with a code can be defined in a

language-independent and machine-readable way, so that caller stubs for a large number of languages

(possibly different from the one in which the legacy code was originally written) can be automatically

generated from such definitions.

This creates virtually endless possibilities for instantaneous utilisation and combination of legacy

codes (callable from C/C++, Java, Python, Matlab, Mathematica etc) for complex high-level

calculations. Also, parallelisation of these codes in a simple fashion becomes possible. The handling

of code and data resources in SOFI is done through an internally developed architecture (a ‘micro-

grid’) for localisation, management and parallelisation/load distribution of codes exposed as web

services. Any code encapsulated as a web service, with its interface defined through a WSDL

document, can be handled by the framework, whose internal components are also themselves

implemented as web services. Figure 4 shows the usage of the framework through a WebService

Broker that deals with requests from clients for single or multiple instances of given services/

applications. This broker is itself a web service and can therefore be reached from virtually any

programming language or environment. It will handle load balancing issues through communication

with optional LoadProbes at each server computer. Figure 5 shows the part of the SOFI framework

dealing with optional managed’ web services, whose life cycle can be controlled by the NetDisponent

service, which is also a web service.  Currently codes for magnetostatic calculations, field line

tracing, finite element representation of CAD models, generic XML machine component database,

and interface to equilibrium codes have been incorporated into the SOFI architecture. It has been

tested for parallel calculations on up to 112 distributed processors.

CONCLUSIONS

The increase in complexity of both diagnostic equipment and physics models in large scientific

experiments poses a problem at least as large as the more commonly observed problem of handling

and storage of data, and is directly related to the possibility of testing scientific models in such

experiments. We have presented a principled approach to large scale analysis using Bayesian

inference as the overarching method, applied it to inference on the central magnetic coordinate

system of fusion plasmas, and outlined the two architectural principles we are applying for the

handling and implementation of the complex relationship between models and diagnostic

measurements that exist in modern nuclear fusion experiments.
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Figure 2: The plasma boundary and uncertainties as reconstructed from the current tomography method. The higher
uncertainty in the upper left part is likely attributable to the proximity of the plasma to the magnetized transformer
iron core, whose unknown magnetization contributes to the uncertainty of the reconstructed boundary.

Figure 3: The principle behind the MINERVA framework for Bayesian analysis. Diagnostics are decoupled from
physics models and can be arbitrarily combined. In the ‘forward mode’, expected measurements of participating
diagnostic can be calculated from underlying joint physics models. In the ‘inverse mode’, physics parameters are
optimally inferred from the combined set of connected diagnostics.
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Figure 4: Usage of the SOFI framework through a web service broker , that manages access, load balancing and
parallellisation of participating web service applications.

Figure 5: Part of the SOFI framework for managing the lifecycle of services through the NetDisponent web service.
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