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ABSTRACT

Physics studies in fusion devices require statistical analyses of a large number of discharges. Given

the complexity of the plasma and the non-linear interactions between the relevant parameters,

connecting a physical phenomenon with the signal patterns that it generates can be quite demanding.

Up to now, data retrieval has been typically accomplished by means of signal name and shot number.

The search of the temporal segment to analyze has been carried out in a manual way. Manual

searches in databases must be replaced by intelligent techniques to look for data in an automated

way. Structural pattern recognition techniques have proven to be very efficient methods to index

and retrieve data in JET and TJ-II databases. Waveforms and images can be accessed through

several structural pattern recognition applications.

1. INTRODUCTION

Some plasma behaviors, as a result of unexpected events and instabilities, only become apparent in an

intermittent way. This fact can complicate the interpretation of their physical nature and their potential

effects on the plasma confinement. The starting point to analyze these phenomena is to find a number

of occurrences high enough to formulate hypotheses with a sufficient statistical basis. The search of

events is carried out in a manual way by means of visual data analysis. Visual inspection of signals

allows the recognition of certain patterns that can be used to identify the presence of non-standard

behaviors. The aim of this searching process is to determine both the shot number and the time interval

where the patterns appear.

Nowadays, data retrieval methods can no longer be based on manual searches according to signal

name and shot number. First, the pulse length of the experiments is increasing significantly. The

longer the pulse, the more tedious is the manual pattern search. Second, the rapid increasing of imaging

diagnostics should be considered. For example, fast cameras may acquire images with a rate of hundreds

of frames per second and, therefore, the manual selection of a representative image for a particular

event becomes a cumbersome procedure. Third, it should be noted that very large databases, with

millions of signals (for example, TJ-II is a medium size device that acquires 500 signals/discharge

and has stored about 18000 discharges) and Tbytes of data, have to be analyzed. For instance, JET

may produce over 10 Gbytes of data per shot, although the typical rate is 5 Gbytes/discharge.

New models for data retrieval have to take advantage of the fact that fusion diagnostics produce

similar signals for reproducible behaviors. This means that diagnostics translate physical properties

into patterns with a correspondence between the plasma physical properties and the structural shapes

that are generated in the signals. Therefore, this direct link allows the introduction of a new paradigm

for data access. Instead of using the shot number as input parameter and the signal samples as output

data, a more practical criterion would be to ask for a pattern and to receive the pulse numbers and the

locations (time instant and/or spatial position) where the pattern appears.

A first approach for pattern oriented data retrieval is the use of the structural forms of the signals.

The presence of characteristic patterns in waveforms (bumps, unexpected amplitude changes or
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abrupt peaks) and images (high intensity zones or specific edge contours) convert structural pattern

recognition techniques in optimal methods to attain an automated and efficient data access. Two

very generic approaches, based on structural pattern recognition techniques, have been developed

for general purpose data retrieval in fusion. First, the Entire Signal (ES) approach  allows searching

for similar images or waveforms [1] from a given one. An entire signal is a complete image or

waveform. Complete waveforms are defined for the same temporal interval from a particular event.

Examples are: a 40s interval from the plasma start, a 10s segment from the beginning of the neutral

beam injection or 5s after an L-H transition. Secondly, another structural approach has been developed

[2]: patterns in signals (PIS). PIS allows seeking for specific patterns within signals.

This article summarizes both techniques and shows specific applications to time-series data and

images in databases of two different fusion devices: the TJ-II stellarator and the JET tokamak. TJ-

II is a medium sized stellarator (heliac type) [3] located at CIEMAT, Madrid (Spain). JET [4] is the

biggest fusion device in the world and it is located in Culham (UK).

Section II of the article introduces the notion of signal collections to put together comparable

data. Section III summarizes the main concepts to consider in a general pattern recognition problem.

Section IV is devoted to describing the application of structural pattern recognition techniques to

Fusion databases. Sections V and VI review respectively the ES and PIS approaches. Section VII is

a discussion.

2. SIGNAL COLLECTIONS

A signal is any kind of data that describes a particular measurement during a discharge and contains

some information. Depending on the specific representation of the data, signals can be of several

types. Firstly, we have bi-dimensional data. The samples are defined by ordered pairs (x, y). Temporal

evolution signals are a particular case of bi-dimensional data where one of the coordinates is time

(fig.1(a)). Secondly, contour maps are often encountered. They are 3-dimensional representations

with two spatial coordinates and the corresponding amplitude (fig.1(b)). Thirdly, images are becoming

every day more frequent. Each pixel is described by two spatial coordinates, a color intensity and a

forth dimension to distinguish the red, green and blue color components (fig. 1(c)). Finally, it

should be mentioned that as personal computers are providing more capabilities on computing and

storage, video movies are becoming very popular diagnostic signals, and very promising results are

being obtained with infrared and visible cameras in JET [5].

Signals are grouped into collections for pattern oriented data retrieval. A signal collection is the

complete set of recorded signals for all the discharges of interest. As a first example, the plasma

current collection is made up of all temporal evolution signals that provide the plasma current in a

Tokamak. A second example of collection could be the set of movies of an infrared video camera.

Generally speaking, any data representation to describe a particular measurement (usually on a

shot to shot basis) is a collection. The existence of collections obeys to the need of grouping

comparable data to make pattern searches easier through equivalent data representations.
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3. MAIN CONCEPTS IN PATTERN RECOGNITION

Due to the fact that the new model for data retrieval should be pattern oriented, a straightforward

approach would be the use of pattern recognition techniques [6] for data access. Pattern recognition

is the scientific discipline dealing with methods for object description and classification. Therefore,

two main concepts arise: object description and classification systems. A fundamental third concept

in pattern recognition, independent of whatever approach we may follow, is the notion of similarity.

Two objects are recognized as similar because they have valued common attributes.

It should be noted that a high dimensionality is an issue in pattern recognition techniques because

the computational effort increases with the dimensionality of the problem. In Fusion massive

databases, the dimensionality depends not only on the number of signals (millions of waveforms,

images and video movies) but also on their size (millions of samples per waveform and hundreds of

millions of pixels per movie).

3.1. OBJECT DESCRIPTION

Object description is the process by means of which a proper representation of the objects is achieved

for classification purposes. The process consists of extracting features or attributes that are of

distinctive nature. After feature extraction, objects are always represented by the corresponding

feature vectors. The process has a double functionality. On the one hand, it translates characteristics

of the objects into attributes that can be managed by a computer system. On the other hand, feature

extraction is used to reduce the dimensionality of the problem as much as possible.

3.2. CLASSIFICATION SYSTEM

Classification systems are used to index the objects according to some criteria. This means the

creation of different clusters (classes) to show the grouping in the data. Creating classifiers is a

learning problem. Learning refers to some form of algorithm to assign each object to a cluster.

There are two common types of learning problems, known as supervised learning and unsupervised

learning. Supervised learning is used to estimate an unknown (input, output) mapping from known

(input, output) samples. The term ‘supervised’ denotes the fact that output values for training samples

are known. In the unsupervised learning scheme, only input samples are given to a learning system,

and there is no notion of the output during the learning [7, 8].

3.3. SIMILARITY MEASURE

This concept is necessary to compare how similar two objects are. It requires the introduction of a

distance between the features or attributes of the objects (in the mathematical sense) to be used as

a proximity measure.

4. STRUCTURAL PATTERN RECOGNITION

Recorded signals from diagnostics are used to analyze the plasma physical properties. Such properties
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can be identified by the presence of associated patterns (structural shapes) in the data. The recognition

of structural shapes plays a central role to distinguish particular behaviors. Making use of this fact,

computational methods can be developed to update the classical model of data retrieval with a new

one based on searching for data according to physical criteria. The traditional method, based on

asking for shot number and returning the signal samples, does not provide pattern locations. Patterns

inside the signals have to be found by means of data inspection. A more powerful paradigm for data

retrieval is founded on asking for patterns inside signal collections and obtaining the discharge numbers

and the pattern location within the signals.

Taking into account the high dimensionality of Fusion databases, the main challenge to put into

operation the new paradigm can be summarized with a single word: efficiency. In this context,

efficiency means not to traverse the entire database when a specific pattern is searched, but to

develop intelligent mechanisms to reduce the searching space just to the most probable signals of

containing a similar pattern.

The crucial element to achieve efficiency in this structural pattern recognition problem is the

classification system. In a linear approximation, looking for similar structural forms inside a signal

collection means to compute the similarity measure between all pairs of feature vectors. However, the

classification system allows the indexation of the feature vectors in such a way that clusters group

similar objects. Therefore, each cluster represents a reduced searching space in which the more likely

objects to be similar can be found.

To look for structural patterns inside a signal collection, some previous steps are required. Firstly,

features to describe the signals must be chosen. Secondly, clustering criteria to group the data into

convenient clusters have to be defined. Thirdly, a similarity measure is needed to be able to compare

how similar (or dissimilar) two feature vectors are.

After the creation of the indexation system, the search of patterns can be carried out. Given a target

pattern, the searching process of similar patterns is accomplished in three steps: feature extraction,

feature vector classification and similarity factor computation. The former is essential to classify the

target pattern into one of the existing clusters and, hence, the target pattern is grouped together with

the more similar ones. The similarity measure is only computed between the target feature vector and

the feature vectors of the cluster and, therefore, the search method avoids traversing the whole database.

As it was mentioned above, two different approaches were developed for data retrieval with structural

pattern recognition techniques: the ES and the PIS methods. Table I summarizes applications of both

techniques to several signal collections (waveforms and Thomson Scattering (TS) images) of different

databases (JET and TJ-II).

5. ENTIRE SIGNAL APPROACH

The applications of the ES technique to JET and TJ-II waveforms use the Haar wavelet transform

[9] as feature extractor. This selection allows a strong reduction of the dimensionality and it retains

the waveform time and frequency information.
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The indexation system is based on a multi-layer classification system whose clustering criteria may

evolve in a flexible and dynamical way. Individual clusters can be split at any moment to reach an

optimal classification. At present, two layers have been considered. The first one divides the collection

into clusters that group shots with the same pulse length. Each first layer cluster can be split into

several ones according to a structural shape criterion (fig.2). The figure shows how the cluster

refinement produces groups with lesser number of signals. In this case, the grouping was carried

out according to similarity values.

The similarity factor is the normalized inner product (NIP). Actually, the absolute value of this

quantity has been chosen to measure the similarity of two feature vectors uw and vw.

(1)

This definition was taken by several reasons. First, the geometrical interpretation of the dot product is

straightforward: two unitary vectors are equal if the inner product is 1. If the value is 0, both vectors

are orthogonal and no similarity exists. Second, this NIP is independent of amplification factors.

Signals differing exclusively in a gain factor are recognized as equal waveforms (similarity 1). Third,

the NIP is also independent of signal polarities.

Figure 3 shows the application of the ES technique to a bolometry signal collection of the TJ-II

database. The waveforms are raw data not calibrated in an absolute way. It should be emphasized that

signals differing in gain and polarity are recognized as similar signals.

Java applications for data retrieval are accessible for concurrent execution from the TJ-II remote

participation system (for TJ-II databases) and the JET data access environment (for JET databases).

Computation times to complete a searching process were measured in two different computer

environments with a single layer classification system based on discharge length. A first environment

with 128 clusters was created with the Matlab software package on a Windows XP Pentium IV

computer. The searching time is the sum of three different times: feature extraction of the target

waveform, feature vector classification into one of the clusters of the classification system and NIP

computation of the target feature vector with all feature vectors in the previous cluster. The first

two times are negligible in comparison with the third one. A mean value can be established as 18

ms per signal present in the second step cluster. A second environment with 256 clusters of waveforms

was tested at the JAC Linux Cluster at JET (a high performance cluster of 181 Athlon processor

cores). The searching time was 1 ms/waveform in the cluster.

Concerning the additional storage requirement for the classification system, the worst case needed

an extra 17% of the space filled by the signal collection.

The ES approach has been also applied to images. In particular, the collection is made up of the

images from the TJ-II Thomson Scattering CCD camera. One image is collected per discharge and

five different kinds of images are possible, depending of the type of measurement: CCD camera

background, stray light, electron cyclotron heating (ECH) phase, neutral beam injection (NBI)

|uw . vw|
||uw||.||vw||

Suv = |cosα| =                , 0 † Suv †1
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phase and cut off density (fig.4).

Feature extraction is accomplished by means of a Haar two-dimensional wavelet transform [9].

The classification system is based on a supervised clustering method with five classes (one per possible

measurement). The similarity measure is computed with the Euclidean distance between feature vectors.

In this particular case, the Euclidean distance provides a better discrimination than the NIP because it

is not necessary to reach the 6th or 7th decimal in the similarity factor to distinguish images.

To search similar signals to a target one, the procedure performs feature extraction and the

classification into one of the five clusters. It is attained by means of a linear discriminant function

based on Support Vector Machines (SVM) in a one-versus-the-rest approximation. Similarities are

computed with the feature vectors of the cluster.

6. PATTERNS IN SIGNALS APPROACH

This approach allows the search of patterns within time-series data. This is a big challenge in data

retrieval taking into account the very large volume of Fusion databases.

Patterns can be considered as composed of simpler sub-patterns. The most elementary ones are

known as primitives. Primitives are represented by characters, converting the pattern recognition

problem into a pattern-matching problem.

The description of objects in this kind of pattern recognition systems is difficult to implement

because there is no general solution for extracting structural features (primitives) from data. Primitive

extractors can be developed to extract either the simplest and most generic primitives or the domain

specific primitives that best support the subsequent searching task. The former are domain

independent and the knowledge content is reduced to a minimum. The latter requires strong domain

knowledge and this can be an issue for the wide application of the technique. Therefore, to solve

general purpose needs, it is better to use domain independent feature extractors.

Bearing in mind that the feature extraction tries to reduce the problem dimensionality, any signal

can be divided into segments of equal temporal length and each segment is fitted with a straight line

through a least squares minimization process (fig. 5). Then, segments are encoded according to a

discrete set of values (code alphabet). The definition of code alphabets enables the description of

time-series data as strings, instead of representing the signals in terms of multidimensional data

vectors. The labels of the segments are based on the slope of the straight lines (fig.5). For this

reason, this method is called “the slope method”.

Due to the fact that waveforms are represented by strings, searching for patterns means looking

for characters. Therefore, database technologies must help in the development of the classification

system. One particular database model offers a unique combination of power, flexibility and universal

acceptance: the relational model [10]. In addition, the relational model provides enough flexibility

to retrieve combinations of data. For example, instead of searching for an exact match of slopes, it

is easy to include in the query the search of adjacent slopes or even, the search of just the inverse

polarity sequence (fig. 5). It should be mentioned that a relational database cannot be seen as a
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clustering system in the most pure sense, but it is a very efficient indexing system to retrieve data.

The application of this technique to the TJ-II database was developed with the Microsoft-Access

relational database. It is discussed in [2] and a variant of this method was developed for JET databases.

Looking for reducing the number of primitives to represent a signal, segments of variable temporal

length were considered (fig.6). This length is defined by the number of samples to fit the signal

with a straight line (least squares minimization), but maintaining the fit error lesser than a certain

factor, F, depending on the waveform standard deviation, σ:

F = K . σ , K = constant (2)

Each new segment starts with the fit of three points to a straight line and samples are added (one by

one) while the fit error is smaller than F. The temporal length (∆t) and the amplitude difference

(∆A) between the ends of each segment (fig.6) are stored to compute the similarity in pattern

comparisons.

When selecting a pattern in a signal, (for instance a pattern made up of m characters ‘C1C2…Cm’),

the searching process queries to the relational database for this string and it returns all records

containing ‘C1C2…Cm’. At this point, it is necessary to sort the results by means of a similarity

measure between the target pattern and the returned data.

The similarity factor is defined through the mean value of NIPs over all the segments that form

a pattern, where the NIPs are computed with the ordered pairs (∆t, ∆A) of each segment of the

signals to compare.

(3)

With this definition the similarity is a real number between 0 (no similarity at all) and 1 (equal signals).

The slope method with variable temporal length segments is accessible in a concurrent way for

multiple users from the JAC Linux Cluster of JET. It uses the PostgreSQL relational database

(http://www.postgresql.org). A searching example is shown in figure 7. At the top, the target pattern

appears. It is found with similarity 1 and similar patterns can be seen inside the other waveforms.

Computation time for data searching depends on the pattern to search and also on the flexibility

level required in the query. Typical times are seconds. Additional storage requirement for the

classification system is, in general, a small fraction of the space needed for the signal collection.

DISCUSSION

Structural pattern recognition techniques are an efficient way to implement a pattern oriented data

retrieval paradigm.

S =             Su(i)v(i), m = #segments in the pattern

u(i) = (∆ti, ∆Ai)target pattern and v(i) = (∆ti, ∆Ai)retrieved data

Σ
i=1

m
1
m
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The smoothing level to extract signal characteristics in the feature extraction process is related (in

a direct way) to the degree of dimensionality reduction accomplished in the process. Therefore, fast

events (like ELMS or MHD modes) require low smoothing levels. The cost for this is not to achieve

high dimensionality reductions. As a consequence, higher additional storage for the classification

system will be needed.

There is not a single criterion to develop classification systems. However, care should be taken

to avoid the creation of clusters with only one or two shots.
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  Collection Method Feature extraction Classification     Similarity measure

JET waveforms     ES Haar wavelet Multi-layer system NIP

TJ-II waveforms     ES Haar wavelet Multi-layer system NIP

TJ-II TS images     ES 2D Haar wavelet Single-layer system Euclidean distance

JET waveforms    PIS Slopes Relational database NIP

TJ-II waveforms    PIS Slopes Relational database  Fitted error

Table 1. Summary of structural pattern recognition applications
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Figure 1: Examples of time-series data (a), contours (b), and images (c)

Figure 2: Example of a cluster splitting with Electron Cyclotron Emission (ECE) waveforms from the JET database
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Figure 3: ES technique applied to a TJ-II database collection.
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Figure 4: CCD camera images corresponding to spray light (a), ECH phase (b), NBI phase (c) and cut off density (d).

Figure 5: The slope method. Signals are fitted with straight lines and the labels are the slopes of the straight lines.

(a) (b)

(c) (d)

JG
07

.3
97

-4
c

a

c

e

e

d

z

90°

y

x

-90°

-22.5°

22.5°

-45°

45°

acadezaaacededzddezzzaz

JG
07

.3
97

-5
cinput pattern primitive sequence

direct polarity sequence

inverse polarity sequence

c aee
e

z d

a aee
e

z z

a c ee
e

dz a
a

c

e

e d
z

z

z
z

d

e

e c
a

a

matching pattern 1 in the database 
matching pattern 2 in the database 

http://figures.jet.efda.org/JG07.397-4c.eps
http://figures.jet.efda.org/JG07.397-5c.eps


12

Figure 7: Search of similar patterns in JET. The waveforms
correspond to ECE signals to measure electron
temperature. Variable temporal length primitives were
used. Note that the all patterns found follow the same
behaviour but during different time: 1) a fall; 2) a fast slope
(more abrupt in Pulse No: 68593 but codified with the same
code); 3) a flat zone; 4) a fast rise; 5) a new flat top

Figure 6: The slope method with segments of variable
temporal length
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