

JET

EFDA-JET-CP(07)03/06

P. Buratti, R. Buttery, F. Crisanti, E. Giovannozzi, T. Hender, A. Isayama, E. Joffrin, P. Smeulders, O. Zimmermann and JET EFDA contributors

Core MHD Studies in the Hybrid Regime of JET Operation

"This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

"Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK."

Core MHD Studies in the Hybrid Regime of JET Operation

P. Buratti¹, R. Buttery², F. Crisanti¹, E.Giovannozzi¹, T. Hender², A. Isayama³, E. Joffrin⁴, P. Smeulders¹, O. Zimmermann⁵ and JET EFDA contributors*

 ¹EURATOM-ENEA Fusion Association, C.R. Frascati, CP65, 00044 Frascati, Italy
²EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB, UK
³Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
⁴Association EURATOM-CEA, DSM-DRFC, CEN Cadarache, F-13108 St Paul lez Durance, France
⁵Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Jülich, Germany
* See annex of M.L. Watkins et al, "Overview of JET Results", (Proc. 2th IAEA Fusion Energy Conference, Chengdu, China (2006)).

> Preprint of Paper to be submitted for publication in Proceedings of the 34th EPS Conference on Plasma Physics, (Warsaw, Poland 2nd - 6th July 2007)

1. INTRODUCTION

The Hybrid regime is an alternative to the ELMy H-mode with absent or very weak sawtooth activity and better prospects of MHD stability at high normalised kinetic pressure (β_N). The main MHD activities observed in the hybrid regime are fishbones, Neoclassical Tearing Modes (NTM), internal kink modes/sawteeth and Alfvén eigenmodes [1]. Plasmas with internal kink modes that saturate at low amplitude have good energy confinement and no impurity peaking [2]. Also discharges with dominant fishbone activity feature good confinement, while the m/n = 3/2 NTM tends to seriously affect confinement. The 2/1 NTM, which restricts beta below the no-wall limit $\beta_N \le 4l_i$ in DIII-D hybrid plasmas, was observed at JET in a few cases only, in conjunction with profile modifications provoked by impurity injection or by ELM-free periods, while it was not observed in discharges with $\beta_N / 4l_i$ up to 1.2. The 2/1 NTM is dealt with in [4]. The focus of this paper is on the 3/2 NTM in JET hybrid discharges [5].

2. AMPLITUDE OF THE 3/2 NTM

Rotation of a single-*m* magnetic perturbation produces temperature oscillations with "M-shaped" radial profile (figure 1), whose peak-to-peak distance gives the full island width [6]. In many cases, due either to the presence of a strong 2/2 mode component or to cutoff affecting the ECE diagnostic, this direct information is not available and one has to rely on external magnetic oscillations.

Poloidal field oscillations $\tilde{B}_{\theta}(b)$ were extracted from the spectrograms of \tilde{B}_{θ} as the amplitude to frequency ratio of the n = 2 line. Radial field at the island was evaluated as $\tilde{B}_{r}(r_{s}) = 0.5(b/r_{s})^{m+1}$ $\tilde{B}_{\theta}(b)$, where coil radius *b* and resonant radius r_{s} are referred to the magnetic axis radius *R* from EFIT equilibrium. The full island width is $w = 4(Rr_{s}\tilde{B}(r_{s})/ns_{s}B_{T})^{1/2}$ [6], where B_{T} is toroidal field. Magnetic shear s_{s} is not well measured; the value $s_{s} = 1$, which gives agreement between magnetic and temperature data for the case of figure 1, was chosen once for all. A uniform assumption was also done for r_{s} , since its measurement from ECE data is not always available: the island major radius was assumed to be $R_{s} = 3.4$ m for the entire database. As verified on discharges with R_{s} available from ECE, this assumption introduces errors in *w* that lie within 20% in most cases, with a few outliers at 40%. Results are shown in figure 2. The island width varies from 1 to 25cm, clearly increasing with β_{N} . Besides data points shown in figure 2, the database includes cases (109 out of 279) in which no n = 2 mode is detected and MHD activity is dominated by fishbones.

NTMs affect confinement as islands short-circuit radial diffusion. Figure 3 shows discharge that dithers twice between fishbones and NTM-dominated conditions. The $H_{\text{ITER89L-P}}$ confinement factor decreases by 10% when the island grows to w=0.13m; the relative energy variation is $\delta W/W=0.6w/a$. Analytic estimates based on profile flattening across the island [7] give factors ranging from 0.38 to 1.45, depending on island model and assumed profiles, so JET results are close to the lower bound. Estimated confinement reduction for the biggest observed islands amounts to 20%. Confinement degradation at the onset of the 3/2 NTM was also observed in ASDEX [8].

3. NONLINEAR NTM STABILITY

For the well-diagnosed case shown in figure 1, the (non-linear) tearing stability index at saturation has been evaluated according to $r_s\Delta'(w) = -4.4 \ (r_s/w)(Rq/B_Ts_s)\mu_0 \ j_{boot}$ [10]. Using R = 3.057m, $r_s = 0.395$, $B_T = 2.4$ T and the neoclassical bootstrap current jboot = 1.25×10^5 A/m² as calculated from TRANSP [9], it turns out $r_s\Delta'(w) = -5.7$, which is very close to the usually assumed lower bound -2m. It must be stressed that the observation of spontaneous NTMs indicates that very different values (even positive) occur at smaller w or during current profile evolution.

4. OBSERVATION OF SPONTANEOUS NTMS

Spontaneous NTMs have been clearly identified; in the example shown in figure 4 an n = 2 NTM grows from noise during an ELM-free period lasting from 5.55s to 5.75s. The initial island width is smaller than the polarisation threshold [11], while the transport threshold [6] is below the minimum detectable width. The curvature stabilising effect at zero island width [10] is strong, $r_s \Delta'_{GGJ} < -5.7$, so that the tearing stability index should be positive and large to give classical tearing mode destabilisation; this is difficult to reconcile with the Δ' values estimated at saturation, unless the $\Delta'(w)$ dependence is extremely strong. This problem was pointed out in [12], where triggering by ideal modes was proposed. Tearing modes destabilisation near ideal stability boundaries was considered in [13]; another possibility is that, at least in some conditions, the ion polarisation drift plays a destabilising role.

5. NTM FREQUENCY

The island rotation velocity generally agrees with plasma velocity as measured by charge exchange diagnostics at the assumed island position $R_s = 3.4$ m. In addition to this general trend, spectrograms feature two interesting details, namely sidebands and chirping.

5.1 SIDEBANDS.

NTM lines lie at frequencies between 5 and 30kHz; in the example shown in figure 5, sidebands with spacing of about 1kHz appear when the amplitude of magnetic oscillations increases. This indicates the onset of a limit cycle with a period corresponding to the sideband frequency shift, due either to a secondary instability or to interaction between different modes, e.g. with the n = 3 mode shown in figure 5. This (presently not identified) modulation mechanism could be a new ingredient to understand NTM saturation.

5.2 CHIRPING.

At high NBI power the NTM frequency chirps, i.e. it abruptly flips up (by 50% typically) and then recovers in about 1ms. Similar observations were reported in [12]. These frequency variations cannot be due to ELMs or coupling to m = 1 modes, since chirping events can be found at times when neither ELMs nor m = 1 modes are present. Frequency chirping indicates that a sort of n = 2, m = 3 fishbone is present. So, in addition to the ordinary bootstrap drive, the mode could tap energy from fast particles.

CONCLUSIONS

Neoclassical tearing modes reduce confinement by 20% at high β_N . Frequency spectra point to the existence of new physical mechanisms that can drive/damp NTMs.

REFERENCES

- [1]. P. Buratti et al., Plasma Phys. Contr. Fusion 48 (2006) 1005
- [2]. C. Giroud et al., Nucl. Fusion 47 (2007) 313
- [3]. T.C. Luce et al., Phys. Plasmas 11 (2004) 2627
- [4]. R. Buttery et al., paper P1.137 this Conference
- [5]. E. Joffrin et al., Nucl. Fusion 45 (2005) 626
- [6]. R.Fitzpatrick, Phys. Plasmas 2 (1995) 825.
- [7]. Z. Chang, J.D.Callen, Nucl Fusion 30 (1990) 219
- [8]. J. Stober et al., 21st Fusion Energy Conference, Chengdu 2006, EX/P1-7
- [9]. R.J. Goldston et al., J. Comp. Physics 43 (1981) 61
- [10]. H. Lutjens et al., Phys. Plasmas 12 (2005) 080703 and Phys. Plasmas 8 (2001) 4267
- [11]. R.J.La Haye, O.Sauter, Nucl. Fusion 38 (1998) 987
- [12]. E.D. Fredrickson, Phys. Plasmas 9 (2002) 548

Figure 1: Amplitude and phase of T_e oscillations. Vertical blue lines mark island extremes.

Figure 2: Island width versus normalised beta.

Pulse No:57826, $n = 2 \mod 2$ 3 2 β_N 0 20 n = 2 mode frequency (kHz) 10 0 Island full width MМ € ^{0.10} ≥ 0.05 g-threshold Transport threshold G07 0 6.5 4.5 5.0 5.5 6.0 7.Ó Time (s)

Figure 3: Time history of normalised beta, confinement and island width. Fishbones are present when w = 0.

Figure 4: Time history of β_N , NTM frequency and island width showing a spontaneous NTM onset. Transport and ion polarisation (g) thresholds are shown.

Figure 5: Time history of n=2 mode amplitude and spectrum showing the appearance of sidebands. An n=3 NTM (above 15 kHz) is also shown.