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INTRODUCTION

The condition for the excitation of Alfvén eigenmodes is one of the most basic properties of fast ion

driven instabilities that must be understood in order to predict the stability of modes in the burning

plasma regime. Until recently the quantitative data available on the excitation condition for Alfvén

eigenmodes was limited due to the lack of sensitive core fluctuation diagnostics on the one hand and

the use of Ion Cyclotron Resonant Heating (ICRH) excitation on the other where the tail ion temperature

is typically not known with high accuracy. However, new data obtained on the JET [1,2] and DIII-D

[3,4] devices using sensitive core fluctuation diagnostics and precisely calibrated neutral beam injection

velocities reveal for the first time (a) a much lower velocity threshold for the excitation of Alfvén

eigenmodes than previously observed and (b) high sensitivity of mode excitation to the direction of

neutral beam injection. The asymmetry in beam direction can be attributed to differences in the fast

ion distribution owing to finite orbit width effects and to a possible intrinsic sensitivity of these modes

to the direction of the particle. These observations are particularly relevant to advanced confinement

regimes where core localized Alfvénic activity is readily excited in existing experiments.

DIAGNOSTIC SETUP

Fast ion driven Alfvén instabilities require an efficient energy exchange between the particles and the

waves; i.e. a resonance condition. In most cases, such as with the Toroidicity induced Alfvén

Eigenmodes (TAE), the main resonance occurs at VA = Vb and VA/3 = Vb. However, in reversed shear

scenarios, eigenmodes exist localised in the zero shear region and lead to Alfvén Cascades, also know

as Reversed Shear Alfvén Eigenmodes (RSAE). Due to the time evolution of the safety factor (q)

profile, Alfvén Cascades sweep in frequency from values ωAC << ωTAE ~ ωA/2 well below the TAE

frequency. At these lower frequencies, Alfvén Cascades will resonate with ions well below the Alfvén

velocity Vb <VA [5].

In addition, efficient energy exchange between the mode and the particles requires the radial mode

width ∆m to be larger than the radial orbit particle drift ∆p. Since the radial mode width is inversely

proportional to the toroidal mode number (n) and magnetic shear (s) ∆m ∞ 1/(ns), in conventional

scenarios instability is limited to low mode numbers, n < 10. In reversed shear scenarios, the presence

of a region of zero shear (s=0) allows larger mode numbers (n>10) to be excited in the plasma core.

Core localised waves with large n, invisible to external diagnostics such as magnetic sensors, require

internal measurements for the detection and study of these instabilities.

The diagnostic setups in JET and DIII-D have recently been upgraded to allow core resolved

measurements of fluctuations in the Alfvén frequency range. In JET, the data acquisition system of

the far infrared DCN interferometer have been modified so that 3 vertical chords out of the 4 available

channels measure line-integrated density fluctuations ∆neL where L is the path length in the plasma.

New waveguides installed for the microwave reflectometer system allow for greatly improved radial

localized density fluctuation measurements using O-mode and X-mode propagation, shown in figure

1. In JET, the far infrared DCN interferometer diagnostic is the most versatile diagnostic for providing
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information on the instabilities throughout the discharge over a very wide range in density. This

interferometer system is analogous to the CO2 interferometer system on DIII-D [6] but operating at

much longer wavelengths.

The O-mode microwave reflectometer system is used as an interferometer in the JET experiments

reported here owing to the low operating density. This system provides the best signal to noise ratio

for viewing the core localized modes, but relies on the density being close to, but not exceeding, the

plasma frequency. Operating in the Xmode, the reflectometer is able to detect NBI driven Alfvén

cascades and give valuable information on the radial location as shown in Figure 1. The magnetic

probes are only sensitive to low toroidal mode number instabilities (n=2,3,4), due the radial extent of

these modes. In DIII-D, a CO2 interferometer with 4 chords (three vertical and one radial), allows

line-integral DneL fluctuations measurements. In addition a recently upgraded Beam-Emission

Spectroscopy (BES) system provides spatially localized measurements of ∆ne with increased sensitivity

and Far-Infrared Scattering (FIR) allows line-integrated measurement of density fluctuations over a

large range of wavenumbers.

EXPERIMENTAL SETUP

The JET experiments reported here focus on the study of the fast ion energy dependence on the

excitation of Alfvén Cascades. Neutral Beam Injection (NBI) heating sources with different energies

were used for this purpose at the maximum magnetic field in order to minimise Vb/VA. Keeping the

main plasma parameters constant; magnetic field, BT = 3.46T, plasma current, Ip=2.1 MA, density ne

= 1019 m-3, and using 2MW of Lower Hybrid Current Drive (LHCD) to create reversed magnetic

shear, low power (~3MW) NBI was injected at difference voltages (50keV, 80keV and 117keV). A

similar scan was performed on DIII-D however due to the plasma parameters it was not possible to

reduce the beam to Alfvén velocity ratio Vb/VA much below 0.35. However a new capability on DIII-

D is the rotated neutral beam line allowing the exploration of the directional sensitivity of Alfvén

Cascade excitation.

In DIII-D the resulted reported in this paper are for the following plasma conditions: magnetic

field BT = 2.1T, plasma current, Ip = 1.1MA, density ne = 2 × 1019 m-3—and using low power (~5MW)

NBI injected in the co and counter direction with beam voltage 80keV (Vb/VA 0.4).

EXPERIMENTAL RESULTS FROM JET AND DIII-D

With the highest beam ion energy on JET of 117 keV, Alfvén cascades with various toroidal mode

numbers (n>2) were observed in the frequency range between 30kHz and 140kHz. By decreasing

the beam energy to 80keV, the Alfvén Cascades were still observed but with reduced signal strength

on a range of diagnostics. At 50keV injection energy corresponding to Vb =VA/6, Alfvén instabilities

are still observed in the Alfvén frequency range between 40kHz to 60kHz (Figure 2). This confirms

that Alfvén Cascades can be driven by fast ions with velocities well below the Alfvén velocity

(VA). In ITER, Vb=VA/6 corresponds to alpha particles in the range of 100keV.
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Experiments in DIII-D, showed that the number of Alfvén eigenmodes is much reduced in the case

of dominant counter neutral beam injection (Figure 3). This asymmetry could be due to the difference

in drive due to finite orbit width effects on the radial distribution of co/counter going ions and/or on

an intrinsic sensitivity of the mode to ion direction [7]. This result suggests that Alfvén eigenmodes

driven by passing ions, the dominant drive mechanism expected in ITER, may be sensitive to the

direction of the ion motion.

EVOLUTION OF MINIMUM OF Q SURFACE

It has been shown that the observation of Alfvén cascades can be use to accurately track the evolution

of the minimum of q surface in reversed shear scenarios [8]. The excitation of Alfvén cascades

using NBI and the improved capability of measuring these instabilities in the plasma core with high

n, significantly expands this capability. In JET and DIII-D, it was possible to identify the Alfvén

instabilities patterns corresponding to qmin crossing 3 integer surfaces. At JET, these results are

consistent with the measurements using the Motional Stark Effect (MSE) diagnostic shown in

Figure 4. Therefore, information from the Alfvén waves can be used to reconstruct the q-profile

evolution more accurately and validate the MSE measurements in these discharges.

CONCLUSIONS

These results demonstrate that Alfvén instabilities, in particular Alfvén Cascades, can be excited by

passing sub-Alfvénic ions in the velocity range 0.1<Vb/VA<0.3. This suggests that a significant

interaction can take place for nearly thermalized alpha particles in a reactor, particularly in advanced

confinement regimes where there is a significant region of extended weak magnetic shear in the

plasma core. In addition, the asymmetry in beam direction suggests that the interaction of these

modes with the energetic particles may induce preferential redistribution of passing ions with one

sign of the parallel velocity. Such an interaction may be used to tailor the current drive in advanced

tokamak regimes [9].
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Figure 1: Alfvén Cascades measured using O-mode and X-mode Reflectometry near r/a=-0.2 (Pulse No: 67732).
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Figure 4: Measurement of the evolution of qmin using
Motion Stark Effect (MSE) as a function of time compared
with the time of the appearance of the Alfvén instabilities
patterns corresponding to qmin crossing 3 integer
surfaces (Pulse No:  67674).

Figure 2: Microwave interferometer measurements of Alfvén eigenmodes in 3.46 Tesla JET  discharges with 2-3MW
of injected deuterium beams and for a range of beam ion energies corresponding to 1/3 to 1/6 the Alfvén velocity (VA)
(Pulse No’s: 66959, 66962 and 66963). A discharge with no beams is shown for comparison (Pulse No: 66964).

Figure 3: CO2 interferometer measurements of Alfvén
eigenmodes in 2.1 Tesla DIII-D discharges with 5MW of
injected deuterium beams and for all co-injection (top
Pulse No: 126581) and 20% co-injection (bottom Pulse
No: 126597).
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