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ABSTRACT.

Real-time simultaneous control of several radially distributed magnetic and kinetic plasma parameters

(such as the safety factor, q(x), and gyro-normalized temperature gradient, ρTe*(x), respectively) is

being investigated on JET, in view of developing integrated control of advanced tokamak scenarios and

internal transport barriers suitable for ITER. This paper describes the new model-based optimal profile

controller which will be tested during the forthcoming experimental campaigns. The controller aims to

use the combination of heating and current drive systems - and optionally the Poloidal Field (PF) system

- in an optimal way to regulate the evolution of several parameters. In the first part of the paper, a

technique for the experimental identification of a dynamic plasma model is described, taking into account

the physical structure and couplings of the transport equations, but making no quantitative assumptions

on the transport coefficients or on their dependences. To cope with the high dimensionality of the state

space and the large ratio between the various time scales involved, the model identification procedure

and controller design both make use of the theory of singularly perturbed systems by means of a multiple-

time-scale approximation. The second part of the paper deals with the control theory and algorithm.

Conventional optimal control is recovered in the limiting case where the ratio of the plasma confinement

time to the resistive diffusion time vanishes. Closed-loop simulations of the new controller have been

performed in preparation for experiments, and some results are shown.

1. INTRODUCTION

During the 2002-2004 experimental campaigns on JET, real-time control of radially distributed

parameters, such as the current and electron temperature gradient profiles, was achieved for the first

time [1-3]. This was the initial step of an ongoing long-term research program which aims to ultimately

develop integrated control of steady state advanced tokamak scenarios and Internal Transport Barriers

(ITB) in ITER. At this stage, and for the sake of simplicity, the controller was based on the static

plasma response only and on an algorithm that minimises a weighted sum of least square integral

errors between requested magnetic and kinetic profiles (known to be strongly coupled) and measured

ones [4]. Such an integrated strategy is particularly relevant to future fusion devices such as ITER

where the Heating and Current Drive (H&CD) actuator systems will not be very flexible. It will be

essential when more controls need to be included into the scheme to regulate the fusion burn.

Another characteristic of the profile control investigations on JET is the use of the available actuators

in their routine operating mode, i.e. avoiding features that may not extrapolate to burning plasmas. In

ITER, some actuators will be less versatile than in present-day tokamaks, due to simple physics and/

or technology considerations (antenna design, wave propagation, etc..). For example, controlling

accurately the radial deposition of Lower Hybrid (LH) waves through the launched n|| spectrum [5-6]

could be introduced within the proposed distributedparameter control algorithm [4], but it does not

appear practical in high-beta fusion plasmas and was therefore not implemented for JET. And tailoring

the off-axis non-inductive current density through a unique actuator dedicated to this task (e.g. by

dedicated Neutral Beams (NB), or by additional Electron Cyclotron (EC) or LH waves as is usually
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done) is hardly a possible option in the presence of a large bootstrap current and of alpha-

particle heating.

The approach newly developed at JET aims to use the combination of H&CD/PF (poloidal field)

systems and the experimentally deduced plasma couplings in the most efficient dynamic way to

achieve a set of simultaneous tasks. In this respect, it stands in contrast with experiments in which a

one-to-one correspondence between a given actuator and a scalar output characterising a mÿasma

profile is assumed (e.g. internal inductance, parameter at a given radius or ratio of two such parameters,

location of maximum LH power deposition).

The experiments using the static plasma response controller were successful in achieving the various

targets that were aimed at, thus demonstrating the validity of the coupled profiles approach [4]. However,

it was found to be too sensitive to rapid plasma events such as the spontaneous emergence of transient

ITBs or MHD instabilities. In order to address this issue, a technique for the experimental identification

of a dynamic plasma model has been developed, taking into account the physical structure and couplings

of the transport equations, but making no quantitative assumptions on the transport coefficients or on

their dependences. The next section describes the theoretical analysis which leads to the choice of the

relevant state variables, and the physical constraints to be imposed on the corresponding state-space

model. The high dimensionality of the state space and the large ratio between the various time scales

involved (resistive and thermal diffusions with strong interactions between fast and slow dynamic

modes) call for an appropriate model identification procedure. The technique makes use of a multiple-

time-scale approximation and of the theory of singularly perturbed systems. It generates a slow and a

fast model of reduced orders which are shown to describe the system satisfactorily.

The third section of the paper concerns the theory leading to the controller design. The control

is near-optimal in the sense that it asymptotically merges into conventional optimal control in the

limiting case where ε vanishes. The paper finally describes closed-loop simulations in which the

radial profiles of the plasma safety factor and of the gyro-normalized electron temperature gradient

[7] are controlled simultaneously, and which have been performed in preparation of the

forthcoming experiments on JET.

2. IDENTIFICATION OF A STATE-SPACE PLASMA RESPONSE MODEL

2.1. STRUCTURE OF THE DYNAMIC PLASMA MODEL AND PHYSICALLY RELEVANT

STATE VARIABLES

In order to use optimal control theory and regulate the plasma evolution in advanced tokamak scenarios,

a physics-based technique has been developed to experimentally identify a dynamic, one-fluid plasma

model valid in some broad vicinity of an equilibrium state. The structure of the model stems from a set

of transport equations,

(1)
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in which couplings are retained with no loss of generality. The system (1) is linearized around an

equilibrium reference state (which need not be known explicitly) so that it can ultimately be cast in

the generic form of a state space model, a form commonly used in control engineering. In doing so,

the state variables appear naturally to be the variations of the internal poloidal magnetic flux, Ψ, and

of the temperature, T, and the state space model reads:

∂Ψ/∂t = A11 Ψ(t) + A12 T (t) + B11 P (t) + B12 n(t) + U.Vext (t)        (2a)

ε∂T/∂t = A21 Ψ(t) + A22 T (t) + B21 P (t) + B22 n(t)        (2b)

with inputs P = [PLH, PNBI, PICRH], the heating and current drive input powers, and Vext, the surface

loop voltage. The distributed variables Ψ(x) and T(x), where x is a radial coordinate, are projected

onto a finite set of trial functions (cubic splines, see Figure (1a) using a Galerkin scheme so that

the original partial differential system of equations reduces to an ordinary linear differential

system where U is known and Ai,j, Bi,j are matrices of appropriate dimensions which are to be

identified from experimental data.

The small (constant) parameter, ε, represents the ratio between the energy confinement time and

the characteristic resistive diffusion time (ε<<1), and is introduced here to scale matrices A and B so

that their coefficients have similar magnitudes. In the forthcoming JET experiments, the density profile

will not be controlled in real time, so the variations of the plasma density, n, will be considered as

disturbances (n is treated as an additional system input but not as an actuator). The main assumptions

leading to (2) are enumerated in Ref. [8].

2.2. TWO-TIME-SCALE APPROXIMATION AND CONTROLLED OUTPUT

PARAMETERS

Even when using computer simulated data, the identification of a full-order model (Eq. 1-2)

proves very difficult (ill-conditionned). This is partly due to the various time scales involved,

hence, no attempt has been made using noisy experimental data. To take advantage of the small

parameter (ε ≈ 0.05 in JET), and noting that ε is going to be even smaller in a burning plasma, the

control technique proposed here is based upon the theory of singularly perturbed systems and multiple-

time-scale expansions [9]. We therefore seek two models of reduced orders, a slow model,

∂Ψ/∂t = AsΨ + Bs us   together with     Ts = CsΨ + Dsus (3)

and a fast model (τ = t / ε),

∂Tf/∂t = AfTf + Bfuf (4)

where T = Ts + Tf, and where us and uf are the slow and fast components, respectively, of a vector,

u = us + uf, containing all the inputs (P, n and Vext).
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Having identified a set of relevant state variables, it can prove practical to apply the control to some

output parameters which are more directly linked with MHD stability or ITB physics, and, if possible,

are non-dimensional variables so that the range of their optimum target values is known and does not

depend on the engineering parameters (magnetic field, current, shape, etc...) of a particular plasma

discharge. The safety factor, q(x), and gyro-normalized temperature gradient, ρTe*(x), have been

chosen [1-4] and are thus introduced into the statespace model (to make use of some obvious linearity

between the current density and the poloidal flux, the inverse of the safety factor, π(x) = 1/q(x), is used

to describe the current density profile). As for Ψ(x) and T(x), a Galerkin approximation is used and in

the following, the notations Ψ, T, µ� and ρ will refer to the coefficients of the Ψ(x), T(x), ι(x) and

ρTe*(x) expansions, respectively. The same cubic splines are used for ι(x), Ψ(x) and T(x) (Fig.1(a)),

but a piecewise linear fit was shown to be a better choice for ρTe*(x), (with basis functions shown on

Fig 1(b)) as it involves the gradient of a noisy signal and requires a stronger smoothing [2]. Noticing

that ι(x) ∝ ∇Ψ(x) and ρTe*(x) ∝∇Te(x)/√Te(x), linearizing these expressions, differentiating the basis

functions and assuming that the time variations of factors such as the toroidal magnetic field and

toroidal magnetic flux are not essential and do not depend intrinsically on the power inputs, it appears

relevant to seek a model with direct matrix relations between the Galerkin coefficients Ψ and µ, on one

hand, and between T and ρ on the other hand. Within the two-time-scale approximation, this yields:

µ = Cµ,ψ. Ψ     and     ρs = Cρ,ψ Ψ + Dρ,ψus     (or     ρs = Cρ,µ µ + Dρ,µm us) (5)

and ρs = Cρ,T. Τf  (6)

which complete the system (3-4). It follows that state-feedback control can be applied directly to the

variables [µ, ρ] rather than a less robust output-feedback control for which the closedloop stability of

the high-frequency dynamics would not be guaranteed [9].

2.4. PRACTICAL MODEL IDENTIFICATION

A series of interactive routines have been developed to numerically identify the various elements

of two-time-scale state-space plasma models, either from experimental data as shown below or,

as in Ref. [8], from data obtained through semi-empirical time-dependent simulations of the

plasma evolution with large transport codes. It would indeed be more satisfactory to use the

latter procedure and design the controller prior to running any real experiment. However, using

the JETTO code to simulate previous control experiments based only on the static plasma response,

it was found that the resulting controller gain matrices were significantly different from the

experimentally deduced ones [10]. A fortiori, the present understanding of plasma transport

phenomena is thought to be insufficient to make reliable predictions of the dynamic response of

the plasma, especially in the advanced operation scenarios. Hence, for the time being, dedicated

open-loop experiments are necessary to collect the required data before running the model

identification codes. The codes rely heavily on system identification algorithms described in
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[11] and on the corresponding MATLAB®. Identification Toolbox functions. They run on the JET

cluster of UNIX workstations.

The linearization which is at the origin of the state-space model assumes that all data (inputs,

outputs and state variables) are defined with respect to a reference equilibrium state which corresponds

to a given set of plasma parameters and input powers (Fig.2). JET pulses are generally too short to

reach a well-defined equilibrium state so that such a state cannot be determined accurately, but some

data processing allows the approximate model matrices to be found without explicit knowledge of the

reference state. This is shown on Figure 3 where the free-dynamics of the Ψ Galerkin coefficients

obtained from the model for the splines which are maximum at knots 0.4, 0.5 and 0.6 are compared

with the corresponding experimental data. The eigenvalues of As correspond to time constants of

5.2s, 1.7s and 0.4s.

In a second step, Bs was identified using a pulse with slow modulations of the inputs (FIG. 2)

while fixing As as found above, and a comparison between the model response and the experimental

data is shown on Fig4. The rest of the slow model (Eq. 5-6) does not involve time derivatives, and the

associated matrices (Cµ,ψ, Cρ,µ, Dρ,µ, ...) have been determined via a "least square division" of the

relevant time-dependent data. By construction, this simple operation provides a fairly good fit to the

data in the domain where the linearization applies.

The fast model identification relies on experiments in which input powers must be modulate at

high frequency (20-100Hz), and that forces Af and Bf to be identified simultaneously. However, noting

from Eq. (2b), (3) and (4) that Ds = -Af-1.Bf, one is able to limit the number of matrix elements to

identify. To illustrate the method, results are displayed on Fig.5 for 3 Galerkin coefficients of the Te

profile corresponding to the splines which are maximum at the same knots as previously for Ψ. Finally,

Cρ,T was found via a "least square division" of the relevant fast data.

3. PROFILE CONTROLLER DESIGN AND CLOSED-LOOP SIMULATIONS

The two-time-scale controller is organized around two main loops [9]:

(i) a slow, proportional-Plus-Integral (PI), regulator control loop which drives the system

towards a prescribed equilibrium target state on a resistive diffusion time scale on the

basis of the reduced-order slow model, and regulates its evolution. The slow variation of

the kinetic variables on the same time-scale is governed by the evolution of the magnetic

variables and by the slow feedback evolution of the H&CD actuator powers ;

(ii) a fast proportional control loop which ensures the stability of the kinetic variables on the

plasma confinement time scale, maintaining them on an evolving thermal equilibrium

which, at any time, is consistent with the magnetic configuration. This loop regulates their

transient behaviour when they are subject to rapid disturbances along the slow trajectory.

The generic behaviour of the system can be schematically described using the diagram displayed

on Figure. 6. In addition, the present Profile Controller (PC) has been designed to run in two

operational modes:
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(i) the total plasma current can either be separately controlled together with the plasma shape

through the PF system (normal use of the JET Extreme Shape Controller [12]),

(ii) or more loosely by the PC (q-profile control) while the PF system controls the plasma shape

and the boundary flux. In the latter case, the PC provides the external magnetic flux request,

and part of the PF system is used as an additional PC actuator.

3.1. NEAR-OPTIMAL CONTROL: THE SLOW PI LOOP AND THE FAST LOOP

Given a slow and a fast dynamical system under the form of Eq. (3-6), with a state variable X = Xs

+Xf, and under a set of reasonable controllability conditions [9], the theory of linearquadratic optimal

control and of singularly perturbed systems can be used to find a slow control law, us(t) = -Gs.Xs(t)

and a fast one, uf(t) = -Gf.Xf(t), so that u(t) = us(t) + uf(t) minimizes the cost functional (here all

variables are reduced by their target values):

J [u(t)] = ∫0   X
+(t) Q X(t) dt + ∫0   u+ (t) R u(t) dt (7)

where Q and R are positive-definite matrices that allow a compromise between the controller

performance and the cost in terms of actuator power. The optimal gains, Gs and Gf, can be found from

the solutions of two Riccati equations and ensure the stability of the closed-loop system. Conventional

optimal control is recovered when the ratio of the thermal confinement time to the resistive diffusion

time vanishes so that the small ε approximate model holds true.

Because of the infinite dimensionality of the system and the limited number of actuators, the

controller cannot achieve any possible final state. Given a set of target profiles [ιtarget(x), ρ*Te,target(x)],

we define the best achievable state with the available actuators as the one which minimizes the quadratic

functional (λITB is a chosen weighting parameter):

(8)

Now, in order to ensure that the best achievable state is reached with no steady state offset, a time

integral of the error signals can be included in the slow control law. This is achieved by considering Xs

as the union of the slow controlled variables, [υ, ρs], and of a set of linear combinations of their time

integrals, of the size of the input vector. The slow PI control law then reads us(t)=-{Gsp.µ(t)+Gsi.H.

∫dτ [µ�(ƒ), ρs(τ)]}. By appropriately linking the matrices Q and H with the basis functions, it can be

shown that in the static limit, I is minimum.

By definition, the high frequency components of all the kinetic variables vanish when the system

reaches steady state. They are however subject to perturbations or could even become unstable at

some point. The fast proportional control law, uf (t) =-Gf.ρf (t), is to regulate/stabilize the fast variables,

ρf(t) = ρ(t)-ρs(t), where ρs is estimated through Eq. (5).

3.2. CLOSED-LOOP SIMULATIONS AND RESULTS

As an illustration of the possible controller performance and time response, we display here typical

∞ ∞

×1

×2
I =         ι(x) - ιtarget (x)  2  dx + λITB        ρTe

 (x) - ρTetarget (x)  2  dx
×3

×4
**
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results of closed-loop simulations performed with the SIMULINK. software. These simulations have

been performed assuming that the plasma response is governed by a fullorder state space model

which, in the limit ε → 0, reproduces the reduced-order models which were described in section 2.4

(see Figures. 2-5).

Figure 7 shows the rapid initial jump of the kinetic variables towards their slow trajectories (ρf ≈ 0)

within a characteristic time of about 0.3s. This is followed by the slow evolution of both magnetic and

kinetic variables towards the requested targets which are reached in approximately 4-5s. The effect of

a feedforward compensation of known disturbances such as density perturbations (which can have

both a physical impact on the profile evolution and a non-physical systematic influence on the q-

profile reconstruction) is also shown. A 25% density perturbation has been applied at t = 5s. Figures

7 and 9 show that the excursion of the controlled parameters at the onset of the density perturbation is

reduced when the feedforwarddisturbance rejection scheme is added to the feedback controller.

CONCLUSION

A system identification procedure has been developed and applied to JET experimental data in

order to possibly regulate the dynamics of advanced scenarios through model-based optimal profile

control. A technique using singular perturbation methods and a two-time-scale approximation can

cope with the high dimensionality of the system and the small ratio between the confinement and

resistive diffusion time scales, and yield satisfactory results. A controller based on the same

approximation has been designed. It uses a near-optimal control algorithm which amounts to

conventional optimal control when the ratio of the two time scales vanishes. Simulations show that

magnetic and kinetic profiles can be regulated, at least in the vicinity of a given reference state

where the model applies. In the forthcoming JET campaigns, closed-loop experiments will assess

whether the response models are accurate enough for the radial profiles of the safety factor, q(x),

and gyro-normalized electron temperature gradient, ρTe*(x), to be simultaneously controlled in

real-time. Using the H&CD systems together with the PF system for controlling (i) the plasma

shape, (ii) the magnetic and kinetic plasma profiles (ITB), and (iii) the boundary flux, would then

provide the essential part of an integrated scheme for ultimately achieving non-inductively driven

advanced tokamak discharges in JET and possibly in ITER.
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Figure 1: (a) Cubic splines used for Ψ, ι and T.       Figure 1: (b) Piecewise linear functions used for ρTe*.
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Figure 2: Input LHCD, ICRH and NBI powers for the
reference Pulse No: 66041 (blue), and modulated Pulse
No’s: 66047 (red) and 66042 (magenta).

Figure 3: Identification of As from the reference pulse
data. Comparison between the fit and the experimental
data.

Figure 4. Identification of Bs from Pulse No: 66047.
Comparison between the fit and the experimental data.

Figure 5. Identification of Af and Bf from Pulse No: 66042.
Comparison between the fit and the experimental data.
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Figure 9. Evolution of the cost functional I in the closed-
loop simulation with (full) and without (dotted)
disturbance rejection.

Figure 6. This diagram schematically shows the slow and
fast responses of the system to either constant input
parameters (blue arrow) or to a change in these
parameters (red arrows). Corresponding trajectories are
shown in state space. Lines and curves are artistic 1-D
representations of multidimensional spaces.

Figure 7. Evolution of π(x)(upper traces) and ¡Te*(x)
(lower traces) at x=0.4, 0.5 and 0.6 in a closed-loop
simulation with (full) and without (dotted) disturbance
rejection. The requested target values are shown by the
horizontal lines.

Figure 8. Evolution of the actuator powers in the closed-
loop simulation with (full) and without (dotted)
disturbance rejection.
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