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ABSTRACT.

In recent sawtooth experiments at JET fast electron bremsstrahlung was found to be significantly

enhanced in low-density JET plasmas with grassy sawteeth [1]. Similar observations were found in

T-10 where the appearance of beams of suprathermal electrons accompanied the sawteeth [2].

Estimates for grassy sawteeth JET discharges show that the on-axis inductive electric field is close

to the critical electric field corresponding to the minimum of the friction force on a relativistic

electron, while the electric field induced by sawteeth in the reconnection region could approach the

Dreicer electric field. Under such conditions, suprathermal electrons are generated at each sawtooth

crash while a near-threshold inductive electric field prevents a rapid deceleration of these electrons.

In this paper, a corrected relativistic collision operator is used to derive a Fokker- Planck equation

for the distribution function of relativistic suprathermal electrons in a weakly relativistic plasma, Te

/mec
2 ~ 10-2 << 1, which is then solved by a procedure similar to that employed in [3] and [4].

Special emphasis is placed on a near-critical electric field case typical for plasmas with grassy

sawteeth on JET. It is found that the main result concerning the runaway rate is still valid. In

addition [4], new near-critical electric field regions are considered. In the weakly relativistic region

a numerical solution enables matching to the high momentum analytical asymptote. The form of

the electron velocity distribution function up to the relativistic region, where suprathermal electrons

are present, is thus accurately described and can be used for investigations of fast electron

bremsstrahlung from suprathermal electrons in hot tokamak plasmas.

1. INTRODUCTION

It has long been recognised that electric fields generated during reconnection events in magnetised

plasmas may accelerate electrons and ions of the plasma. One type of these reconnection events,

the sawtooth instability, induces electric fields, Esaw, which can accelerate electrons repeatedly at

each sawtooth crash throughout the discharge. Suprathermal electrons with energies up to 20-

100keV were recently observed during magnetic reconnection at sawtooth crashes in the T-10

tokamak [1]. Fast electron bremsstrahlung was also found to be significantly enhanced in low-

density JET plasmas with short-period, chaotic sawteeth, so-called grassy sawteeth [2], [3]. Estimates

show that the on-axis inductive electric field was close to the critical field, i.e. the critical field

parameter α = E/Ec satisfies α = 1 [2], [3] throughout these discharges, while electric fields induced

by each sawtooth, Esaw, could in the reconnection layer be much higher, Esaw >> Ec. Here, the

critical electric field is given by

(1)

and standard notation has been used for thermal plasma quantities. Under such conditions,

suprathermal electrons are generated at each sawtooth crash while a near-threshold inductive electric

field prevents a rapid deceleration of these electrons.
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To accurately describe suprathermal electrons in sawtoothing plasmas one would need to solve the

time-dependent Fokker-Planck equation for the electron distribution function. The present paper

reports how a general Fokker-Planck theory for the steadystate relativistic electron velocity

distribution function of a plasma in a near-critical electric field has been developed.

2. GOVERNING EQUATION

The governing equation for a steady-state velocity distribution function f subjected to an external

electric field E is the Fokker-Planck equation

(2)

where C(f) is the collision operator, p is the (relativistic) momentum and e the absolute value of the

electron charge. Previous authors [4] had a collision operator not conserving number of particles,

as was pointed out by Karney and Fisch [5]. However, instead of using a symbolic algebra package

as Karney and Fisch did, one can derive the relativistic electron collision operator analytically and

the Fokker-Planck equation becomes

(3)

Here, ∈ = Ec/ED = Te/mec
2 is the small expansion parameter satisfying ∈ > 10-2 in the grassy

sawtooth discharges on JET [2], q = p/mec is the normalised momentum, Z is the effective charge

number of the plasma ions and terms of order O(∈2) have been neglected. From this Fokker-Planck

equation one can derive all the necessary analytical expressions for the steady-state relativistic

electron distribution function.

3. SOLUTION OF THE FOKKER-PLANCK EQUATION

In a weakly relativistic plasma with ∈ = 1, Eq. (3) can be solved using asymptotic techniques,

devised by Kruskal and Bernstein [6], who first solved the corresponding nonrelativistic problem.

As in their analysis as well as in [4], different asymptotic expansions must be used in five different

regions of velocity space.

In region I, one considers two small quantities, ∈ and q, and makes use of the nonrelativistic

limit of the Fokker-Planck equation (3) to solve the expansion fI = f0 + ∈f1. To leading order one

obtains the Maxwellian distribution. The next order term, fI, can be analytically obtained in two

limiting cases but is not needed for the subsequent analysis.

∇p f = C ( f ),  -eE
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The ordering in region I breaks down at q2 ~ ∈1/2 and region II is considered. An expansion of

F = ln fII in √∈  is performed and the leading order term is Maxwellian. For the next order term,

F(1) = u4/8 + F′, a high momenta analytical asymptote is obtained with a matching constant b(α, Z)

which was previously left undetermined. A numerical algorithm, which essentially consists of first

performing a Legendre polynomial decomposition of h(u, µ) = exp(F′) and then solving the parabolic

equation as an initial value problem, can be formulated and used to obtain this matching constant

for any plasma parameters. The matching at µ = 1 is illustrated in Fig.1 (a), which depicts how the

numerical solution evolves towards the high momenta analytical asymptote for large u. Figure 1 (b)

illustrates the directionality of the distribution function in µ space.

In region III, the electrons are fully relativistic and the electron velocity distribution function

starts to deviate strongly from the Maxwellian distribution. Moreover, region III either extends to

infinity in q-space (α ≤ 1) in which case only exponentially few energetic electrons are generated,

or its solution breaks down for  α > 1, and a region of runaway acceleration appears for q > 1/    α > 1.

One expands F = ln fIII in √∈ and the analysis for α > 1 more or less reproduces the results of [4],

whereas the analysis for α < 1 presents new results. The analysis for α > 1 breaks down in an α

boundary layer of width δα = α - 1 ~ ∈1/2, which was previously not noticed. A first order perturbation

solution, F = F0 + δαF1, can be obtained in this boundary layer.

Returning to the case α > 1 one considers a boundary layer at q = qc = 1/    α > 1, region IV. An

inner variable x is introduced according to q = qc (1 + ∈1/3x) and the distribution function in region

IV is then obtained by expanding F = ln fIV in ∈1/3. The numerical scheme for determining the

matching constant b = b(α, Z) between regions II and III enables a calculation of the runaway rate

to order O(1). Therefore, one takes the matching of region IV onto region III to order O(1), whereas

previous authors only took the matching to order O(ln ∈) (since previously, b ~ O(1) was unknown).

In order to find the runaway flux one finally considers the runaway region, region V. In a plasma

with a slightly super-critical electric field, 0 < α - 1 << 1, the characteristic value of q in the runaway

region satisfies q > qc = 1/   α - 1 >> 1, and the distribution function fV can then be described

analytically throughout region V. Requiring a beam-like solution, q|| >> q⊥ and  >> δ/δq||, one

obtains the equation

(4)

Separation of variables can be undertaken once the variable transformation

(5)

has been performed. Writing fV = Φ(ξ) Ψ(η), one obtains the equations

(6)

˜

(α - 1) = + +
δfV

δq||

q⊥
.δ

δq⊥

1
q⊥

q⊥
q||

(1 + Z)
2

δfV

δq⊥

δfV

δq⊥

2fV

q||

ξ = ;
q|| (1 + Z) / 2

q⊥ η =
q|| (1 + Z)

2

ξ++ + Cs Φ = 0,
1
ξ

α + 1
2

δ2Φ
δξ2

δΦ
δξ



4

(7)

where Cs is a separation constant. Equation (7) is easy to solve, and Eq. (6) can be transformed into

the Kummer equation, which has the confluent hypergeometric function, 1F1 (a, b; x) (a, b

parameters), as a solution. Finally, the solution in region V is given by

(8)

where A is a source strength constant, related to the runaway electron source at the boundary layer,

q = qc. Equation (8) is a generalisation of Eq. (60) in [4], and is valid for all q in region V in the case

of a near-critical electric field. A condition for fV → 0 as q|| → ∞ is that Cs > 2, which holds for this

near-critical electric field case. Connor and Hastie [4] took the special case Cs = α + 1. However,

this choice of the separation constant precludes asymptotic matching and is therefore incorrect.

One finally determines the constants A and Cs in Eq. (8) to O(1) by matching the solution in

region V to the region IV solution, after which the electron velocity distribution function is fully

described in all five regions of momentum space.

4. RUNAWAY RATE

The region V solution, Eq. (8), which is valid for ∈1/2 << α - 1  << 1, gives the final expression for

the runaway rate to O(1) in ∈. The scaling of the runaway rate with the electric field, given by Eq.

(61) of Ref. [4], is reproduced to O(ln ∈):

(9)

However, Connor and Hastie had a remaining unknown proportionality constant, CR(α, Z) ~O(1).

The present analysis facilitates a determination of this proportionality constant. Table I presents

results for typical near-critical electric field plasma parameters.

CONCLUSIONS

The present paper reports how the electron velocity distribution function of a plasma in a near-

critical electric field is obtained by solving the Fokker-Planck equation in five regions of momentum

space by an asymptotic expansion technique. In addition to previous analysis [4], the solutions are

determined to O(1) in ∈. This enables a determination of the previously unknown runaway rate

proportionality constant.
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The results can be used to investigate experimentally observed phenomena with a significant

suprathermal electron population, e.g. enhanced bremsstrahlung from suprathermal electrons during

grassy sawtooth discharges on JET [2], [3].
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Table I: The runaway rate proportionality constant CR(α ,Z) for plasmas with critical field
parameters α = 1.3, 1.4 and 1.5, and with effective charge numbers Z = 1, 2 and 3.

Figure 1: In (a) numerical solutions (solid lines) and high momenta analytic asymptotes (broken lines) in region II as
functions of pitch angle µ for normalised momenta µ = [2.25, 4, 7] is depicted. The matching constant is b(α = 0.9,
Z = 2.1) = 0.69 in this case. In (b) a polar plot of normalised function h(u, µ) for normalised momenta u = [0, 1, 2, 3,
4, 5, 6, 7] (solid lines) and the high momentum analytic asymptote for u = 7 (broken line) is illustrated. The plot
shows how the low momenta solutions are isotropic as compared to the high directionality of the high momenta
solutions and the analytic asymptote. The same plasma parameters as in (a) are used.
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