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1. INTRODUCTION

The JET polarimeter system[1] measures the Faraday rotation and the Cotton-Mouton phase shift

angle linked(proportional) to the line integral of poloidal magnetic field times the electron density

and line integrated plasma density respectively. It has been shown [2] that this ideal link is verified

in the experimental data only for line integrated densities ( in units of 1020m-2.) neL20<1. At high

density this linear link disappears and the two effects mutually interfere[2,3,4]. In this condition it

is useful to have a tool to predict the polarimetry measurements using data produced by other

diagnostics, to compare the theory and polarimetric measurements. This paper presents a study

aimed in particular to validate the ability of a model to predict the Cotton-Mouton effect at high

plasma density and temperature, i.e. at ITER relevant plasma parameters. The Faraday rotation and

the Cotton-Mouton phase shift angle can be calculated by means of the rigorous solution of Stokes

equations[4], which define the spatial evolution of the polarisation of the laser beam inside the

plasma. A simplified analytical solution(AS) could be found using an ordering between the

components of the vector appearing in the Stokes equations which is typical of Tokamak plasma.

The AS could be used (i)for understanding the mutual effect between the Faraday and Cotton-

Mouton at high density and current, (ii)to assess the range of plasma parameters were there is a

linear dependence between Cotton-Mouton phase shift angle and line integral of plasma density

and (iii)to calculate the line integral of plasma density once the Cotton-Mouton phase shift and

Faraday rotation are known. The paper is organised as follows: in sec II the method of rigorous

solution to Stokes equations is introduced and the comparison with measurements is carried out; in

sec III the AS is obtained and the comparison with the rigorous solution and other analytical

approximations present in the literature is discussed ;in sec IV conclusions are given.

2. SOLUTIONS OF STOKES EQUATIONS.

The geometry considered includes the propagation of a laser beam along a (vertical) chord (taken

as z-axis) in a poloidal plane of a Tokamak. The toroidal magnetic field (Bt) is perpendicular to this

plane and the angle of the electric field vector of the input wave with Bt is 45o. The polarisation of

a beam can be described using Stokes vector S, whose components are expressed in terms of the

ellipticity (χ) ( which is linked to the Cotton-Mouton phase shift angle φ) and Faraday angle (ψ).The

spatial evolution along the z-axis of the polarisation of a beam is given by the Stokes equation [4]:

(1)

where Ω = ( T1, T2, T3), where T1 = C1* n* Bt2; T2 = 2* C1* nBr* Bt;T3 = C3n* Bp (Bt is the

toroidal magnetic field (T), Bp the poloidal magnetic field (T), Br the radial magnetic field (T), n

the electron density (m-3), C1 = 1.794 10-22 and C3 = 2 10-20) [4] , and Z = z/ ka , where k is the

elongation and a the minor radius. The relation between the measured Faraday rotation(y) and the

Cotton-Mouton phase shift (f) angles and the components of Stokes vector is:

→

→

→

= Ω × 2dS

dZ
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(2)

(3)

A simple approximate solution [4] is found to (1) if the quantities W3 = ∫ = dZ T3 C3 * ∫ n Bp dZ

and W1 = ∫ = dZ T1 C1 * ∫ ndZ Bt2 satisfy to the conditions (Wi)2 <<1). In this condition the Stokes

vector and the Faraday and Cotton-Mouton phase shift angle are given by

(4)

(5)

(6)

The fig.1a shows a comparison between the measurements of Cotton-Mouton phase shift angle (blue

simbols) and numerical solutions of Stokes equations (black stars) for the Pulse No: 60870 (Bt = 2.7T,

IP= 3.5MA, neL20 =2.5, W1 =0.36, W3 =1.84), polarimeter channel 2. The red and green dashed

traces are calculated using the upper and lower limit given to the measurement of plasma density

made by the LIDAR Thomson Scattering. The magnetic field components which enter the evaluation

of W1 and W2 and vector Ω  = ( T1, T2, T3) are taken from the equilibrium. The fig.1b shows a

comparison of the measured Cotton-Mouton phase shift angle (blue symbols) and the approximate

solution( black stars) (4, 5, 6). It is clear that the approximate solution is not adequate, and this is

because (W3)2 >1, for this shot.

3. APPROXIMATE ANALITICAL SOLUTION

The conditions (Wi)2 <<1 are restrictive and more general approximate solutions to the equations

(1) can be found, noting that the following inequalities between the components of the vector Ω

hold for tokamak plasma:

 T3 > T1 >> T2          (7)

Figure 2 shows the values of Ti for the Pulse No: 60870 : the condition (7) is verified.

As consequence of condition (7), the terms with component T2 can be neglected in the equations

(1). The expressions for the Faraday angle and Cotton-Mouton phase shift can now be obtained

from the simplified Stokes equations:

(8)

→

→

S1 = -W3 = -C3* tan ∫ n Bp dZ = 1/ tan 2ψ

S2 = 1 -(W12 + W32) / 2 ≈ 1

S3 = W1 = C1* ∫ ndZ Bt2.  tan φ

= tan 2ψS2

S1

= tan φS3

S2

(z) = tan 2ψ = -              ;  
S1

S2

11

tan (W3)
(z) = tan φ = [                              ]  

S3

S2

∫dyT1(y) cos(W3(y))

cos(W3(z))
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The fig.3 shows a comparison between the rigorous solution( blue symbols) , the approximated

solution obtained using the inequality Wi2<<1( red symbols), and the AS ( black symbols) for Pulse

No: 60870,channel2.A good agreement is found between the AS and the numerical solution. The

fig.4 shows the ratio of tanf/W1 versus W3 as it is calculated from (8) for a discharge with edge

safety factor q95 = 3: it is deduced that the phase shift is close to the line integral of plasma density

only for W3<<0.5. The fig.4 can be used to extract the value of the W1, so the value of the line

integral of plasma density, once the Cotton-Mouton (S3/S2) and Faraday angles are known.

CONCLUSIONS

The Stokes equation is a model useful to analize the polarimeter data: good agreement is found

between data and calculations . A new analytic approximate solution is obtained from Tokamak

ordering, which is in agreement with the numerical solution and experimental data also in conditions

where (Wi)2>1.This analytic solution can be used to evaluate W1 (i.e. the line integral of plasma

density) once the W3 ( i.e. the Faraday rotation) and Cotton-Mouton phase shift are known.
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Figure 1: Tan φ = S3/S2 versus time. Figure 2: Ti versus normalized Z for Pulse No: 60870,
channel2.
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Figure 3: Tan φ = S3/S2 versus time for Pulse No: 60870.
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Figure 4: Model calculation of Tanφ/ W1=(s3/s2)/W1
versus W3.
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