
D. Darrow, S. Baeumel, E. Cecil, B. Ellis, K. Fullard, K. Hill, A. Horton,
V. Kiptily, L. Pedrick, M. Reich, A. Werner and JET EFDA contributors

EFDA-JET-CP(06)01-17

Initial Results from the New
Lost Alpha Diagnostics on JET



“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



Initial Results from the New
Lost Alpha Diagnostics on JET

D. Darrow1, S. Baeumel4, E. Cecil2, B. Ellis1, K. Fullard3, K. Hill1, A. Horton3,
V. Kiptily3, L. Pedrick3, M. Reich4, A. Werner4 and JET EFDA contributors*

1Princeton Plasma Physics Laboratory, Princeton NJ, USA
2Colorado School of Mines, Golden, CO, USA

3EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK
4Max-Planck-Institut für Plasmaphysik, EUROATOM Association, Germany

* See annex of J. Pamela et al, “Overview of JET Results”,
 (Proc.�20th IAEA Fusion Energy Conference, Vilamoura, Portugal (2004).

Preprint of Paper to be submitted for publication in Proceedings of the
16th HTPD Topical Conference on

High Temperature Plasma Diagnostics,
(Williamsburg, Virginia, USA, 7th May - 11th May 2006)



.



1

ABSTRACT.

Two new devices have been installed in the JET vacuum vessel near the plasma boundary to

investigate the loss of energetic ions and fusion products in general and alpha particles in particular

during the up coming JET experiments. These devices are (i) a set of multichannel thin foil

Faraday collectors and (ii) a well collimated scintillator which is optically connected to a charge

coupled device. Initial results, including the radial, energy and poloidal dependence of lost ions

from low yield plasmas during the 2005-06 JET restart campaign will be presented.

1. INTRODUCTION

Magnetically confined fusion plasmas of the present and future rely on good confinement of

energetic ions, e.g. Neutral Beam Injection (NBI), Ion Cyclotron Resonant Frequency (ICRF)

heating tail ions or fusion-produced alpha particles, to maintain efficient heating. The Joint

European Torus (JET) has substantial NBI and ICRF capability, and may also conduct future

experiments with Deuterium-Tritium (DT) plasmas that would generate 3.5MeV alpha particles.

Consequently, it is an ideal facility for the study of fast ion losses. In addition, the design and

construction of a fast ion loss diagnostic for JET may have application to the International

Thermonuclear Experimental Reactor (ITER). Accordingly we have recently installed two new

fast ion loss diagnostic devices on JET. These consist of a set of thin Faraday foil collectors

and a scintillator probe. Thin Faraday-foil detectors, in which ions that are lost from a fusion

plasma are detected as current to ground in a metallic foil near the plasma boundary, have been

used to investigate ion losses on NSTX[1], DIII-D[2], and JET[3]. Similarly, scintillation

detectors have been widely employed to study ion losses on TFTR[4], NSTX[5], and other

machines [6]. The present devices are intended to study lost ions in general and d-t fusion

product alpha particles in particular during the upcoming JET campaigns. The design and

expected signal levels in these devices have been discussed in previous contributed papers to

this conference series. [7,8].

2. FARADAY FOILS DETECTOR KA-2

The Faraday cup array will detect the current of fast ions at multiple poloidal locations, with a

dynamic range of 1 nA/cm2 to 10 mA/cm2 at a temporal resolution of 1ms. The detectable range

of α-particle energies is about 1-5MeV. The energy resolution for 3.5MeV α-particles is estimated

to be about 15-50%. The array has been installed in Octant 7 and consists of nine detectors

spread over five poloidal locations between z = 22 and 80cm below the midplane. A recent

photograph of KA2 indicating the five poloidally distributed foils sets is shown in Figure 1.

Radially, the detectors are equally spaced on three locations between 25 and 85mm behind the

adjacent the poloidal limiter. Each detector consists of at least 4 75mm×25mm Ni foils (2.5µm in

eight of the detectors and 1.0µm in the ninth) which are separated by insulating mica foils.

Depending on its energy, a particle can pass through a certain number of foils before it is stopped
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in one foil, thus causing a current signal. The detection of the temporal evolution of the current

signals in all foils in the radially and poloidally distributed detectors will allow a map of particle

energies at different locations.

3. SCINTILLATION DETECTOR KA-3

The scintillator probe has been installed in Octant 4, in a lower limiter guide tube (input slit:

z = -280mm, ϕ = 123.75o, R = 3.799m). A photograph of the probe is shown in Figure 2. The

scintillator probe will allow the detection of particles with a pitch angle between 30o and 86o

(5% resolution) and a gyroradius between 20 and 140mm (15% resolution). It is located in the

lower limited guide tube of octant 4 about 28cm below the midplane. The underlying principle of

scintillator measurements is the emission of light by a scintillating material after a particle strikes

this material. Selection criteria for the particles that hit the scintillator are introduced by using a

set of collimators within the magnetic field of JET. An optical arrangement within the scintillator

probe is used to transfer the light emitted by the scintillator towards a coherent fiber bundle, a

CCD camera and a photomultiplier array.

4. INITIAL RESULTS

4.1.A. FARADAY FOIL DETECTORS.

KA2 has observed lost ions during ICRH and NBI heating. Examples of results obtained during

ICRH are shown in Figures 3 – 6. In Figures 3-5 we look, respectively, at the energy, radial and

poloidal dependence of lost ions during a 1.4 MW ICRF pulse (Pulse No: 64556) with BT = 2.5T

and Ip = 2.0MA. The energy dependence, Fig.3, in which the ions are largely stopped in the first

three foils, is consistent with a flux of protons with a maximum energy of about 1.5MeV [9]. The

radial dependence, Fig.4, indicates a drop-off of about a factor of ten in flux proceeding from the

foil set closest to the plasma to that farthest (a distance of 60mm). The poloidal dependence, Fig.5,

shows a predominance of ion losses at pylons 3 and 4 which are at angles of 21o and 27o below the

machine midplane. While we have yet to carry out detailed orbit calculations for energetic protons,

we have completed detailed calculations of alpha particle orbits from d-t fusion plasmas as part of

the KA2 design process[7]. It is interesting to note that these lost alpha calculations likewise indicate

a preferred poloidal angle between 15o and 27o. In addition, it is interesting to compare the currents

measured with KA2 to other diagnostic indicators consistent with ion losses. In Fig.6 we compare

the current in foil 121 with the intensity of the edge Dα light, the soft x-ray signal and the intensity

of neutron production for JET Pulse No: 65558 (BT = 2.2T, IP = 2.0MA and PICRF = 2.7MW). Not

surprisingly, current bursts as picked up in KA2 correspond to spikes in the x-ray and Dα signals

and to a drop in the neutron production. Finally we have observed an interesting correlation between

neutron production rate versus plasma current and lost ion current versus plasma current during a

series of very recent NBI “blip” experiments (JET Pulse No’s: 65971-65977 with blips of 1.2MW

NBI power of duration 100ms every ~500ms with the plasma current linearly decreasing with time
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between 50 and 60 sec into the pulse). A comparison of NBI power, neutron yield and ion current in

foil 111 during one of these pulses a shown in Fig.7. These parameters are compared in Fig.8, where

there is an increasing correlation between reaction yield and Ip and a roughly decreasing correlation

between foil current (lost beam ions) and Ip.

4.1.B. SCINTILLATOR DETECTOR.

The scintillator detector has recently begun to generate images during JET pulses. One of the first

images in shown in Fig.9. In addition to CCD images of the scintillator, KA3 is able to measure the

ion current onto the scintillator, using basically the same electronics as used by the foils in KA2. In

Figure 10 the current from foil 111 (the front foil of the radially innermost of the three foils sets in

the top pylon) in KA2 is compared to the current incident upon the scintillator foil in the companion

lost ion diagnostic KA3 which is roughly one third the way around the torus from KA2. The KA3

current signal is correlated both with particle losses showing also on the CCD and with some of the

signals picked up by the foils of KA2. These are very promising indications that both diagnostics,

while different in design will be aiding to explain the same processes originating in the plasma.

They will be complementing each other with good synergy. Finally in Figure 11 there is a comparison

of the energy signal as a function of time obtained from the scintillator by integrating over the

isoenergetic pixels at successive times with the currents from the front, second and back Faraday

foils in the top pylon. This is for JET Pulse No:65857 in which there is a sawtooth crash at about

15.2s. In addition to the strong signals associated with this crash, there is a good correspondence at

times of weaker signals such at 18.5 and 19.6 seconds.

CONCLUSIONS

Both the Faraday foil and scintillation lost alpha diagnostic detectors have been successfully installed

in JET and observations during initial commissioning plasmas indicate that both systems are properly

working. The assessment of their performance limits is under way and will be extended using

synergies that have been demonstrated.

ACKNOWLEDGEMENTS

This work is supported by US Department of Energy contracts DE-AC02-76CH03073 & DE-

FG03-95ER54303 and conducted under EFDA. In addition we would like to acknowledge the

excellent technical support of Dave Miller, Bob Marsala, Joe Frangipani and Guy Rossi at PPPL.

REFERENCES

[1]. W.W. Heidbrink, M. Miah, D. Darrow, B. LeBlanc, S.S. Medley, A.L. Roquemore and F.E.

Cecil, Nucl. Fusion 43 (2003) 883.

[2]. W.P. West, C.J. Lasnier, J. Watkins, J.S. deGrassie, W. Heidbrink, K.H. Burrell, F.E. Cecil.

Journal of Nuclear Materials 337-339 (2005) 420.



4

[3]. O.N. Jarvis, P. van Belle, G. Sadler, G.A.H. Whitfield, F.E. Cecil, D. Darrow and B. Esposito,

Fusion Technology. 39, (2001) 84.

[4]. S.J. Zweben, R.V. Budny, D.S. Darrow, S.S. Medley, R. Nazikian, B.C. Stratton, E.J.

Synakowski and G. Taylor for the TFTR Group. Nucl. Fusion 40 No 1 (January 2000) 91-149

[5]. D. Darrow , R. Bell, D.W. Johnson, H. Kugel, J.R. Wilson, F.E. Cecil,R. Maingi, A.Krasilnikov

and A. Aleksayev. Rev. Sci. Instrum. 72, 784 (2001)

[6]. M. Nishimura, M. Isobe, T. Saida and D.S. DarrowRev. Sci. Instrum. 75, 3646 (2004). A.

Werner, A. Weller and D.S. Darrow. Rev. Sci. Instrum. 72, 780 (2001).

[7]. D. S. Darrow, S. Bäumel, F. E. Cecil, V. Kiptily, R. Ellis, L. Pedrick, and A. Werner. Rev. Sci.

Instrum. 75, (2004) 3566.

[8]. S. Baumel, A Werner, R. Semler, S. Mukherjee, D. Darrow, R. Ellis, F.E. Cecil, L. Pedrick, H.

Altmann and J. Gafert. V. Kiptily and J. Gafert. "Scintillator probe for lost alpha measurements

in JET "; Rev. Sci. Instrum. 75 (2004)3563.

[9]. The proton range energy calculations were done with the code SRIM02 which was written by

Jim Zeigler.

Figure 1. Photograph of the JET Faraday foil lost ion
diagnostic KA2 showing the five pylons.

Figure 2. Photograph of the JET scintillator lost ion
diagnostic KA3.
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Figure 3. Comparison of currents in four successive foils 111,112,113, and 114 for JET Pulse No: 64556 indicating
energy discrimination capability of KA2. The energy of the proton flux is roughly 1.5MeV.
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Figure 4. Comparison of currents in foils 412, 422, and 432 for JET Pulse No: 64556 indicating
radial dependence of lost ion flux.
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Figure 5. Comparison of currents in foils in pylons at poloidal angles 9o, (top trace), 15o, 21o, 27o, 33o (bottom
trace)for JET Pulse No: 64556 indicating poloidal dependence of lost ion flux.
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Figure 6. Comparison of current signal in KA2 (a) with soft x-ray flux at outer divertor (b) and neutron yield as
measured in fission chamber (c) and edge Dα light (d) for JET Pulse No: 65558.
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Figure 7. Comparison of NBI power , neutron flux measured in fission chamber and smoothed current
signal from KA2 foil 111 for JET Pulse No: 65971
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Figure 8. Comparison of neutron yield and integrated current in foil 111 versus plasma current during JET NBI blip
pulses ( for JET Pulse No’s: 65971, 72, 75, 76 and 77). The foil currents and the neutron signals are integrated over
a 200ms time interval starting with the onset of each beam blip of the beam blips. The maximum neutron yield
following each blip is about 3 1014 neutrons/sec
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Figure 9. KA3 scintillator probe CCD Image of JET Pulse No: 65857 at 17.0sec.

Figure 10. Comparison of current measured in scintillator probe KA3 (top) and Faraday foil detector
KA2 (bottom) for JET Pulse No: 64556.
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Figure 11. Comparison of energy distribution versus time from scintillator (top) and current in front
Faraday foils in top pylon (bottom) in region of sawtooth crash at 17.2sec during JET Pulse No: 65587.
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