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ABSTRACT

This work presents a perturbative approach for the evaluation of the effective oscillator strength

averaged over continuum and Gaunt factors, for a particular case of complex atoms with two electrons

outside closed shell. Based on the Coulomb formalism accounting for the general properties of the

Coulomb Green’s function, together with its available compact integral representations and discrete

state expansions, results refer to Be-like C, Al and Ar, and Ba-like W ions, as an example. Such

calculations are of interest as they represent accurate benchmark data for beam emission spectroscopy,

Zeff analysis or complex atoms modeling in fusion plasma devices.

1. INTRODUCTION

Precise quantum –mechanical calculations of Gaunt factors exist only for hydrogenic species. Semi-

analytical methods are used to determine the asymptotic series expansions of the radial wave functions

in the pure Coulomb regime. Closed analytical expressions are available for the orbital quantum

number, l, summed Gaunt factors, in the hydrogenic case. Simple fittings to these ones have been

given by Burgess and Summers[1].

In the present work it is proposed an extension of the use of Rydberg states in the Coulomb

formalism accounting for the general properties of the Coulomb Green’s function, together with its

available compact integral representations and discrete state expansions[2]. Coulomb bound-free

matrix elements are computed numerically, avoiding the complex problem of uniform asymptotic

expansion. Although, for dipole couplings the integrands can be, in principle, evaluated exactly

performing the integration running onto continuous spectrum without severe technical difficulties.

One way to get around this is to introduce the so-called ‘averaged excitation energy’. These

representations are most useful as they provide elegant and efficient ways to compute values of

high-order perturbative matrix elements in hydrogen, position of high Rydberg states, autoionisation

probabilities, oscillator strength averaged over continuous spectrum, and consequently Gaunt factors,

for non- fully ionized complex atoms.

2. THE CALCULATION

The model refers to an atomic system, with the net charge of the core Z, and with two electrons

outside closed shell, the outer ‘Rydberg electron’ labeled 1, being more excited than the inner

electron, referred to as the ‘valence electron’ and labeled 2. The other electrons, [γ], are named core

electrons. For example, Ba-like W18+ has configuration [Xe] 6s2, Sr-like W36+ has [Kr]5s2,  Hf-like

W2+ has [Xe] 4f145d26s2, etc. These configurations can be written as [Xe] n
2
l
2
j
2
n

1
l
1
, for Ba-like and in

a similar form for the others. The quasi-continuum states are of type 5d
5/2

nf (J=5) or 6p
3/2

nh in Ba-like

W18+ with decay channel 5d
5/2

nl → 5d
3/2

ε’l and such spectra may be grass-like in their complexity. In

the present proposal these spectra are simulated in ‘a single configuration description’ assuming that,

the Rydberg electron evolves from a bound hydrogenic state (n
1
l
1
) to a continuum state (εl) while, the

valence electron falls from the excited ionic state (n
2 
l
2 
j
2
) to a lower state (n

0
l
0 
j
0
). The valence electron
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strongly interacts with the core. Hence the spin-orbit effect for this electron dominates all other

interactions. The electronic repulsion 1/r
12

 is generally stronger than spin-orbit effects for the Rydberg

electron.

Based on the Heisenberg approximation for helium [3], the ‘bound’ Rydberg state, [γ]n
2
l
2
j
2
n

1
l
1
,

has been written as zeroth-order solution for the eigenvalue equation, in the coordinate-space

representation. The ‘excited’ Rydberg state of the atomic system, [γ]n
0
l
0
j
0
n

s
l
s
, has been described in

the Coulomb formalism accounting for the general properties of the Coulomb Green Function

(CGF) and its Sturmian representation. In this case, the resolvent, G(Ω), of the non-relativistic

Hamiltonian, H
C 
= H

0
 +V, with H

0
 = ss rprUp /12/)(2/ 2

0
2
0 −++  and V= ss rr /1/1 0 − , is a solution

of the operator equation (Ω-H
C
) G(Ω)=1, where Ω is a complex energy variable and G is the CGF.

Assuming nonpenetration hypothesis, the valence electron is always closer to the core than

the Rydberg electron, and configuration mixing arising from perturbation by interaction V is a

small effect as long as the two wave functions are spatially separated. Then, the potential V can be

treated as perturbation thus that, the dipole matrix elements between ‘bound’ and ‘excited’ Rydberg

states, [γ]n
2
l
2
j
2
n

1
l
1 
→ [γ]n

0
l
0
j
0
n

s
l
s 
, in intermediate coupling, can be written as product of two mono-

electronic matrix elements. The effective oscillator strength averaged over continuous spectrum

can be defined as: 
1

1)(

n

nf
f eff
eff =  where:

˜eff (n1) =

∞
|<n2l2j2|r2|n0l0j0>|2|(  

0
 
drR(n1l1;r)S(ks,nsls;r) )|22m

3he2
¥ Σ Σ

n0, l0, j0, ls ns

Es

2J + 1           (1)

In Eq. (1) the sum runs over the complete (discrete + continuous) set of eigenstates of H
C
. The

‘averaged excitation energy’, E
s,
 is given by: 2

12/1
000222

nEEE jlnjlns −−= = 2/2
sk− , with

222 jlnE and 000 jlnE threshold energies. The );( 11 rlnR  and );,( rlnkS sss are hydrogenic and

Sturmian radial components of the wave functions with respect to the valence (n
1
l
1
) and continuum

electron (n
s
l
s
), respectively, m and e are the electron mass and charge, respectively, and J is the total

angular momentum of the initial state. Finally, the G –factors for ionization of level n
1
 has been

evaluated as 
1

4
1ln1

χ
RyE

fG effi ++= , where E is the collision energy, χ
1
 the ionization energy of

level 1, 2
11 /nRy=χ , and Ry =13.6eV.

3. RESULTS

In intermediate coupling, )( 1nfeff depends on k but not on J, since the whole Hamiltonian is

independent of the Rydberg-electron spin. The effective oscillator strengths averaged over continuum
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for Be-like Ar and Ba-like W, ions, in dipole approximation, are given in Table1. The calculation

refers to continuum states with n
s
 ranges from n

1
 to 15.

For 1s22p
3/2

4d → 1s22s
1/2

np and 1s22p
3/2

4p → 1s22p
1/2

ns series in CIII, bound-free Gaunt factors

and free-free Gaunt factors, are plotted versus electron temperature in Fig.1. The corresponding

photon energy E
s
, and effective oscillator strengths, f

eff
, averaged over continuum, is given next to

the curves. For free-free transitions, the quadrupolar term have been included in Eq.(1). In Fig.2

free-free and bound-free Gaunt factors are plotted versus electron temperature for given photon

energy.

CONCLUSIONS

The accuracy of the numerical calculation depends on the accuracy of the parent ion energy

calculation and on the performed infinite, but discrete, sum over n
s
 of term involving the overlap

integral between hydrogenic and Sturmian functions. The last one has been controlled in a

self-consistent manner on the basis of the partial sum rules of the averaged oscillator strengths.

These rules are fulfilled only in the case when the photon frequency equals to the difference of the

eigenvalue of the approximate Hamiltonian to the wave functions used in the calculation, (E
s
), is

substituted in the oscillator strengths, f
eff

(n
1
). The parent energies have been evaluated in the

MQDT/R-matrix methods[4] for C2+ and Al9+ ions, and Cowan’s code for Ba-like W.
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Figure 1: Bound-free (Gbf) and free-free (Gff) Gaunt
factor in C2+. Effective oscillator strengths averaged over
continuum, feff, and photon energy, Es, in atomic units
(a.u.), are given next to the curves.

Figure 2: Gaunt factors for C2+ at given photon energy,
Es, in atomic units, versus Te, in eV.

Table 1: The effective oscillator strengths averaged over continuum for
W18+ and Ar14+. Continuum quantum numbers ns ranges from n1 to 15.

ion transition f
eff

(n
1
)

W18+               [Xe] 6p
3/2

n
1
h →[Xe]6s

1/2
n

s
g k=7/2 k=9/2

n
1
 =  6 1.028552 0.411421

7 1.296603 0.518641

8 0.292346 0.116938

Ar14+              [He] 2p
3/2

n
1
d→[He] 2s

1/2
n

s
p k=1/2 k=3/2

n
1
 =  3 0.126883 0.063441

4 0.088255                0.044127

2.5

2.0

1.5

1.0

3.0

100 200 300 4000 500

C ΙΙΙ

Electron temperature (eV)

G
au

nt
 fa

ct
or

s

JG
05

.3
73

-1
c

Gff, 2p (3/2) 4p - 2p (1/2) ns
feff = 0.241161
Es = 0.02584

Gbf, 2p (3/2) 4d - 2s (1/2) np
Es = 0.0266721 a.u.
Gbf ~ 1.0101 - 1.0479 (this week)
Gbf ~1.061173 (Ref.1)

3.5

3.0

2.5

2.0

1.5

1

4.0

2000 4000 6000 80000 10000

JG
05

.3
73

-2
c

Electron temperature (eV)

G
au

nt
 fa

ct
or

s

Be-like C, free-free Gaunt
Es = 0.30890 a.u., feff=0.185979

Be-like C, bound - free Gaunt
Es = 0.2979713 a.u., feff = 0.174723

http://figures.jet.efda.org/JG05.373-1c.eps
http://figures.jet.efda.org/JG05.373-2c.eps

