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ABSTRACT

We have recalculated the MHD stability of a JET discharge in the diagnostic optimised configuration.

Previous results using the MISHKA-I stability code have shown that the reconstructed equilibrium

of the experiment lies in the stable region against low to intermediate n peeling-ballooning modes

after the ELM crash, and in the unstable region just before the crash. More detailed stability analysis

using the ELITE code has been carried out in this study, and good agreement with previous results

has been found. The stable region in s-a space gets narrower for higher n values.

INTRODUCTION

During the high confinement regime or the H-mode, a regular sequence of periods of MHD activity

including rapid loss of particles and energy from the edge region occurs. These activities, known as

Edge Localized Modes (ELMs), can deteriorate the global confinement but are efficient in removing

density and impurities. It is therefore desirable to understand the physics of the underlying ELM  activity.

One of the main results found in a previous study [1] using the MISHKA-I stability code [2]

for the JET diagnostic optimized configuration discharges [3] was that just before an ELM, the

equilibrium lies in the region unstable to low- to intermediate-n peeling ballooning modes, and

second stable to high-n ballooning modes due to low shear. After an ELM crash, the flattening of

the pressure gradient makes the plasma return to the low- to intermediate-n stable region.

We have revisited the plasma edge stability analysis of a discharge, using the 2-D linearized

ideal MHD stability code, ELITE [4]. The computing time can be significantly reduced with this

code, and ELITE allows the analysis to be extended to higher toroidal mode number, n, without

computations requiring excessive CPU time.

EQUILIBRIUM RECONSTRUCTION AND STABILITY ANALYSIS

The equilibrium reconstruction needed for the stability calculation is described in detail in [1]. To

briefly summarize, the edge LIDAR Thomson scattering and ECE radiometer, with edge CXRS

(charge exchange recombination) as extra information, have been used for the edge electron

temperature profiles. The edge LIDAR and lithium beam diagnostics have been used to determine

the edge density profiles. The core electron temperature and density profiles have been obtained

with the LIDAR Thomson scattering. For ion pressure profiles, P
electron

=P
ion

 has been assumed. The

inductively driven current and the pressure gradient driven bootstrap current has been calculated self-

consistently with the HELENA equilibrium code. The bootstrap current dominates the inductive current

in the edge region where the stability of ballooning-peeling mode determines the ELM properties.

The peeling-ballooning stability has been determined with the 2-D linearized ideal MHD

stability code, ELITE, which employs an extension of  classical ballooning expansion and which

uses a second order expansion in 1/n. We have chosen 2ms before the ELM crash of the JET

Pulse No:55937. The MHD stability boundary calculated with the ELITE code for n=6 is shown in

Fig.1 in the usual s-a space, where s=(dq/dr)/(r/q) is the magnetic shear and a=-2µ
0
Rq2(dp/dr)/B2

is the normalised pressure gradient. Both quantities are evaluated for ψ=0.98 at the outboard side
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on the mid-plane (ψ is normalised poloidal flux). In Fig.1, the solid circles represent the stable

equilibria and the open squares the unstable ones. The results are in good agreement, both qualitatively

and quantitatively, with previous calculations [1], where the MISHKA-1 code had been used for

stability determination. The unstable point denoted by A in Fig. 1 corresponds to the experimental

equilibrium. This point A is deep in the unstable region for the peeling-ballooning stability. However

it lies in the second stable region for infinite-n ballooning modes. The mode structure shows rather

extended peeling-ballooning characteristics as in [1]. This is consistent with the experiment, in that

type I ELM activity with large energy loss has been observed in this shot. Other equilibria to be used in

the stability scan are generated by changing the weight on dp/dψ and the current with a step function in

the region ψ>0.95. After the ELM crash, the equilibrium is located in the stable region of Fig.1.

The q-profiles for different current profiles with similar pressure gradient profiles are shown

in Fig.2 as a function of ψ1/2. The q-profiles of (a), (b) and (c) in Fig.2 correspond to the equilibrium

points of A, B and C (i.e., points with similar s) in Fig.1, respectively. Although the global q profiles

do not change much, they change considerably, and therefore so does s, near the ψ=0.98 surface.

The pressure profiles for different pressure gradient profiles with similar current profiles are shown

in Fig.3 as a function of ψ1/2. The pressure profiles of (a), (b) and (c) in Fig.3 correspond to the

equilibrium points of A, D and E (i.e., points with similar s) in Fig.1, respectively. The ± values

near the ψ=0.98 surface differ considerably for these points.

Results for higher-n calculations are shown in Fig.4 for n=10 and in Fig.5 for n=15. By

comparing with Fig.1, it can be easily seen that the region stable to peeling-ballooning modes gets

narrower as n increases, particularly in the low α (α<1.5), high s (s>5) region and in the mid α
(1.3<s<1.8), mid s (2<s<5) region. Stability of the low s region is less sensitive to a change of n.

The dependence of growth rate, γ, as a function of n for equilibrium points A, F, and G of Fig.1 is

shown in Fig.6. For the experimental equilibrium A of Pulse No:55937 (Fig.6(a)), γ reaches a

maximum at n=17. For the low shear case (Fig.6(b)), γ has its maximum at lower n (n=15), while

γ increases with n in the range studied for the large shear case (Fig.6(c)).

SUMMARY AND DISCUSSIONS

We have revisited the plasma edge stability analysis of a discharge in the JET diagnostic optimised

configuration. The analysis shows that our results with the ELITE code are in good agreement with

previous ones from the MISHKA code, both qualitatively and quantitatively. This enables the

computing time to be significantly reduced and the real time analysis of edge MHD stability can be

made possible for controlling ELMs actively in future tokamak experiments. ELITE also allows

the analysis to be extended to high toroidal mode numbers without computations becoming too

demanding on computing requirements. The stable region in s-a space gets narrower for higher n

values. High n calculations need large memory and rather long computational time. However, it is

necessary to analyze other experimental cases to make a large enough database to understand the

ELM triggering mechanism.
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Figure 1: MHD stability of a JET diagnostic optimized
configuration Pulser No: 55937 just before the type I ELM
crash for n=6. Open squares are unstable points and solid
circles are stable ones. The point A corresponds to a
reconstruction of experimental equilibrium.

Figure 2: q-profiles as a function of ψ1/2 for (a)
equilibrium point A of Fig.1, (b) equilibrium point B of
Fig.1, and (c) equilibrium point C of Fig.1.
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Figure 3: Pressure profiles in arbitrary units as a function
of ψ1/2 for: (a) equilibrium point A of Fig.1, (b)
equilibrium point D of Fig.1, and (c) equilibrium point E
of Fig.1.

Figure 4: MHD stability of a JET diagnostic optimized
configuration Pulse No: 55937 just before the type I ELM
crash for n=10. Squares are unstable points and circles
are stable ones. The point A corresponds to a
reconstruction of the experimental equilibrium.

Figure 5: MHD stability of a JET diagnostic optimized
configuration Pulse No: 55937 just before the type I ELM
crash for n=15. Squares are unstable points and circles
are stable ones. The point A corresponds to a
reconstruction of the experimental equilibrium.

Figure 6: Growth rates of MHD modes normalized to
Alfven time scale τA=R(µ0ρ)1/2/B as a function of toroidal
mode number n for (a) equilibrium point A of Fig.1, (b)
equilibrium point F of Fig. 1 (c) equilibrium point G of
Fig.1.
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