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INTRODUCTION

The L-H transition power threshold is often predicted using log-linear power laws fitted to

experimental data. Here we present two methods aimed at improving such predictions for both

future machines such as ITER and current machines such as JET. Extrapolation to future machines

is addressed using Errors-in-Variables (EIV) techniques. Interpolative single machine prediction is

addressed using Neural Networks (NNs).

EIV REGRESSION APPLIED TO MULTI-MACHINE THRESHOLD SCALINGS

Log-linear power law scalings produced from the H-mode Threshold database are often fitted using

Ordinary Least Squares (OLS) regression. The OLS statistical model contains the assumption that

the error on the dependent variable is much larger than the error on any of the independent variables.

Applying OLS to a dataset which violates this assumption results in an undesirable biasing of the

fit as shown in fig.1.

In this project the measurement errors on the data used to produce the most recent threshold scalings

[3] were evaluated to determine if the use of OLS had introduced bias. Through applying an alternate

fitting procedure which does not suffer the assumptions of OLS, Errorsin- Variables Orthogonal

Regression (EVOR) [1, 2], a set of unbiased scalings were produced. The results of the analysis of the

IAEA04R [3] data set are presented here. In fitting the H-mode threshold scalings, the threshold

power (PL-H) is the dependent variable. The toroidal magnetic field strength (B), line integrated density

(n) and a geometry variable are the independent variables. Plasma surface area (S) or the combination

of plasma minor radius (a) and major radius (R) are the commonly used geometry variables. The

relative (percentage) errors on each of these variables for every tokamak in the database were assembled

(see table 1). These errors were combined in weighted quadrature with the tokamaks weighted by the

number of points they contributed to the IAEA04R data set. This produced a single error estimate for

each variable in the data set (see row marked IAEA04R in table 1).

These errors reveal that the OLS assumption is only weakly satisfied by the IAEA04R data for

both common forms of scaling.With the errors on n and S at 41.5% and 26.0% of the error on PL-H,

respectively, a moderate skew in the threshold scalings is to be expected. Similar results were

obtained for a number of different data sets derived from the threshold database, suggesting that an

alternate fitting model would be more suitable.

The alternate fitting method employed in this analysis, EVOR, is an Errors-in-Variables model

which can handle significant errors on all the variables without introducing bias to the fit (fig.1). Its

use has been demonstrated with the confinement database [4]. Like OLS, EVOR attempts to minimise

the least squared error to fit the data. Unlike OLS, however, the least squared error is calculated

along a vector orthogonal to the fitting function. The mathematical procedure for EVOR is only

slightly more complicated compared to OLS. Fitting power law scalings with EVOR was performed

with the following procedure: 1) Take the Log of the data and normalise each variable with associated

relative error, 2) Subtract data means from each variable for the entire dataset (mean centre), 3)

Calculate Principal Components (PCs) using Principal Component Analysis, 4) Select smallest PC
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as it represents the normal to fitting plane through data, 5) Transform back out of log space to

produce scaling.

Fitting the IAEA04R data with both OLS and EVOR produced the following scalings:

PL-H = 0.077 n0.44 B0.65 S0.80 (OLS) (1)

PL-H = 0.075 n0.56 B0.58 S0.85 (EVOR) (2)

The exponents on n and B change between the OLS fit and the EVOR fit with the exponent on n

increasing by 27% and the exponent on B decreasing by 11%. The effect, for this scaling, is an

increase in the predicted PL-H for ITER by 13% from 33.7MW to 38.1MW. The new prediction still

falls within the ITER design parameters [5]. A similar trend was observed for other data selections

from the threshold database.

The average errors used in the EVOR calculation (table 1) contain a degree of uncertainty as

they are based on a combination of estimated errors from each tokamak in the database. To determine

the sensitivity of the scalings to this uncertainty plots describing how each exponent changes when

varying a single error about its estimate were produced. Figs. 2(a)-(d) show the results for the

scaling listed above. While varying the errors on a, R, S and B had little effect, the plots demonstrated

the importance of producing accurate errors for both n and PL-H as the exponents were observed to

be very sensitive to these errors. The effect the uncertainty in the PL-H error has on the ITER

prediction for the above scaling is shown in fig.2(e).

In conclusion it was found that the use of OLS introduces bias into the threshold scalings which

can be corrected for by using an alternate fitting procedure. Refining the errors on PL-H and n will

improve the reliability of the predictions. The effects of correlated errors, which neither EVOR nor

OLS treats, still needs to be investigated for the threshold database.

NEURAL NETWORKS APPLIED TO JET L-H DATA

When planning experiments on JET, log-linear power laws are often used to predict the threshold

power required to achieve a L-H transition. The JET L-H threshold data, however, is known to

contain regions of operating space that can not adequately be described by power law fits, such

as the minima in the threshold at low density or the behaviour of the threshold with X-point

height. In this project NNs were applied to the JET L-H data as NNs have a more flexible functional

form allowing them to describe more complex trends in the data. NNs consist of a set of

interconnected processing nodes where the structure of the NN determines the relationship between

the network inputs and outputs. It has been shown that NNs are able to fit any well behaved

single-mapping function [6].

Data from dedicated ramp shots performed with the the MkII-GB (Septum) and MkII-GBSRP

divertors were assembled with the data sampled in L-mode 10-30ms prior to the transition. The

variables collected included PL-H, B, n and X-point height. In total 164 shots were collected for the

septum divertor and 106 shots for the SRP divertor. To remove known systematic differences between
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divertors the data from each divertor was fit separately. Due to the low number of shots the number

of variables that could be fitted with was severely limited. The threshold power was fitted as a

function of just n and B which required filtering the range of the remaining variables to reduce

residual scatter. After filtering, 73 points remained for the septum and 42 points for the SRP.

The fit to the septum data is shown in figure 3. A 5-10% reduction of RMSE compared to power

law fits to the septum and SRP data was observed. The small amount of data limited the analysis of

the low density behaviour with only a slight turn up in threshold seen in the septum data, a feature

the power law did not fit. Similar results were observed for the SRP data.

The small quantity of data and limited range of parameters limited improvement of the NNs

over the power law scalings for the JET L-H data. Applying this method to other databases such as

the ELM frequency, for which there is a large set of data, should produce better results. With

sufficient data the improved predictions provided by NNs should allow for potential savings in

experimental time on future tokamaks such as ITER.
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Figure 1: A Comparison of EVOR and OLS fits to a generated data set. Data set contains 3000 points sampled
uniformly over [-1, 1] from the line marked TRUE, given by f = 1.5x. Gaussian errors of s = 1 were added to the

data on both the dependent variable ( f ) and the independent variable (x). m is the gradient of each line.

Table 1: Errors quoted or calculated for variables used in scalings for each tokamak. †Those errors which were
calculated.  +Quoted by MAST team. * Low estimate.

Tokamak

ASDEX
AUG
CMOD
COMPASS
D3D
JET
JFT2M
JT60U
PBXM
TCV
MAST
NSTX
TUMAN-3N

IAEA04R

SR

1.0%
0.2%
0.6%
2.0%
0.6%
1.0%
0.8%
0.5%
0.7%
1.0%
1.4%
2.0%
2.0%

0.87%

Sa

1.5%
1.1%
2.0%
6.0%
0.5%
3.0%
3.0%
1.0%
3.0%
2.0%
2.6%
3.0%
5.0%

2.50%

SS

2.1%
1.3%
2.2%
9.6%
1.1%
4.9%
7.3%
1.8%
8.3%
2.7%
3.0%
6.5%
5.9%

4.03%

SB

1.0%
1.0%
1.0%
2.0%
1.0%
1.0%
1.0%
1.0%
1.0%
1.0%
1.5%
1.0%
3.0%

1.07%

Sn

3.0%
3.0%
5.0%
5.0%
4.0%
8.0%
2.0%
10.0%
5.0%
5.0%
7.0%
6.0%
10.0%

6.45%

sPLH

19.2%
23.3%
15.3%
11.3%
9.9%
12.2%
10.1%
19.3%
21.2%
11.1%
10.0%
6.9%
6.3%

15.55%
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Figure 2: (a)-(d) Stability of scaling to errors on each variable. Exponents: B (red), n (green), S (orange). Scaling
constant is blue (reads off right axis). (e) Effect on ITER estimate of varying error on PL-H.
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Figure 3: (a) Results of fit to septum data with PL-H a
function of B and n. Error bands show level of agreement
between 5 NNs fitted to the same data - narrow bands
denote greater agreement. (b) Histogram of relative error
between measured PL-H and the values estimated from
the power law and neural network fits.
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