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ABSTRACT.

The internal kink mode is commonly present in tokamak plasmas and is often responsible for

sawtooth instabilities. The presence of fast ions in the plasma, such as those generated by auxiliary

heating, may not only affect sawtooth behaviour but also cause the appearance of fishbone oscillations

which are caused by different branches of the internal kink dispersion relation. There are principally

two different methods that are used to analyse the internal kink mode stability in the presence of

fast ions. The first is based on a perturbative approach and in this case, the fast ions’ energy functional

is taken as a perturbation of the ideal MHD functional. The use of numerical codes like the new

version of the CASTOR-K code then allows an accurate calculation of the perturbation on the

mode growth rate. The second method is based on a variational formulation where the full dispersion

equation including diamagnetic effects is solved using simplified expressions for the fast ions’

energy functional and the fast ions’ distribution function. The marginal stability equation allows

then the determination of the regions of stability for each of the solutions in the space of parameters.

In this paper both methods are described and applied to analyse JET experiments were both sawteeth

and fishbone stability changed during the discharge.

1. INTRODUCTION

Internal kink modes are commonly observed in tokamak experiments. The most unstable is the

n=1, m=1 (toroidal and poloidal mode numbers) which is associated with the q=1 surface, q being

the safety factor. This mode is always unstable in cylindrical geometry if the safety factor on axis q0

is below unity and though toroidal effects are stabilizing, the mode is still potentially unstable in all

tokamaks. It is often associated with the occurrence of sawteeth [1], but fishbone oscillations [2]

can also be caused by different branches of the internal kink dispersion relation [3]. In future tokamaks

like ITER, where the q=1 radius is expected to be large, instabilities caused by n=1, m=1 internal

kink modes can involve the displacement of large portions of plasma. These instabilities may reduce

the discharge’s performance and, aside from that, the occurrence of a monster sawtooth crash after

a period of stabilization can be hazardous. It is therefore important not only predict when the

different branches of the dispersion relation can be unstable but also try and develop methods to

control the related instabilities. The presence in the plasma of ICRH driven fast ions is known to

strongly affect the internal kink stability [4]. These ions, under usual conditions of tokamak operation,

are predicted to have a destabilizing effect over fishbones and a stabilizing effect over sawteeth.

However, it is possible to change heating characteristics or plasma parameters in order to modify

these effects, allowing some control over these instabilities. In the ideal MHD framework, when

the minimized variational energy for the internal kink displacement [5] is negative, δWMHD < 0 ,

the normal modes problem allows two solutions, one stable and one unstable, both with Re(w) = 0,

where ω  is the complex frequency. The unstable solution will be referred to as the kink mode and

its growth rate is given by γ1 = -ωAδWMHD, where ωA is the Alfven frequency. The stable solution

Im(ω) < 0 , if physical, corresponds to the ion mode. γ1 is then defined as the growth rate of the

unstable mode associated with δWMHD < 0. Taking into account diamagnetic effects, the dispersion
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relation for the internal kink mode is given by γ1 + i[ω(ω - ω*i)]
1/2 = 0 [6], where ω*i is the bulk ion

diamagnetic frequency. If ω*i is finite, the kink and ion modes are no longer purely growing (damped)

and acquire real frequencies. When increasing ω*i the growth and damping rates of the kink and ion

branches decrease until for ω*i > 2γI both branches become marginally stable. If the plasma contains

fast particles, these particles can provide a viscous effect that taps the energy related to the bulk

ions’ density gradient destabilizing the ion branch. This branch, when unstable, causes fishbone

bursts to be observed with a mode frequency Re(ω) ≈ ω*i [7], [8]. Including the hot particles’

energy functional δWHOT in the dispersion relation a new branch appears in its solution, the

(precessional drift) fishbone branch [9]. The growth rate of this mode goes to - ∞ as the fast particles

β (kinetic pressure / magnetic pressure) goes to zero but becomes unstable when βh is above a

critical value βh > βhc. This branch is responsible for fishbone oscillations with a mode frequency

Re(ω) ≈ 〈ωD〉, where 〈ωD〉 is the average precessional drift of fast ions. Usually the regime of low

frequency fishbones Re(ω) ≈ ω*i diamagnetic fishbones will be adopted here) is observed for low

values of βh while the regime of high frequency fishbones Re(ω) ≈ 〈ωD〉 (precessional fishbones) is

observed for high values of βh being both regimes separated by a stable window on βh [10].

In this paper it is analysed how ICRH driven fast ion populations can affect the n=1, m=1

internal kink stability through the inclusion of the hot particles energy functional δWHOT  in the

appropriate equations. For this two different methods are used. The first is based on a perturbative

approach, δWHOT being taken as a perturbation of the ideal MHD functional δWMHD . The use of

numerical codes then allows an accurate calculation of δWHOT as a function of several parameters.

In the limit ω / 〈ωD〉 → 0 it is possible to evaluate how sawtooth stabilization by fast ions depends

on these parameters. The second method is based on a variational formulation where the full

dispersion equation is solved for a large aspect ratio circular cross-section, using simplified

expressions for the fast ions’ energy functional and fast ions’ distribution function. The marginal

stability equation allows then the determination of the regions of stability for each branch of the

internal kink dispersion relation in the space of parameters.

2. METHOD PERTURBATIVE

The effect of a fast ion population on the kink mode can be analysed using a perturbative approach

where δWHOT is taken as a perturbation of the ideal MHD functional δWMHD,

(1)

The eigenfunction is determined by minimizing only the MHD functional δWMHD and is later used

to calculate δWHOT. With this it is possible to accurately calculate δWMHD using numerical codes.

A new version of the CASTOR-K [11] code has recently been developed in order to calculate

δWMHD for ICRH driven fast ion populations. The CASTOR-K code uses the eigenfunction

calculated by the ideal MDH code MISHKA [12] or the resistive MHD code CASTOR [13] and the

equilibrium calculated by the HELENA code [14]. The fast ion distribution function is assumed to

δW = δWMHD+δWHOT.
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be characterized by a single value of the normalized magnetic momentum λ = µB0 / E, where µ is

the magnetic momentum µ = mv2
⊥/2B , B0 is the magnetic field on axis and E is the particle energy.

This corresponds to considering a population of particles with potato orbits (Pφ < 0) and banana

orbits with turning points located over the ICRH resonant layer, λ being given by the ratio between

the ICRH resonance radius and the major radius λ = Rres | R. The energy distribution is assumed to

be a Maxwellian characterized by a temperature THOT and the radial distribution is introduced as a

polynomial function of adjustable parameters. In the limit ω / 〈ωD〉 → 0 the perturbation on the

mode growth rate due to fast ions is given by:

(2)

where Ek is the kinetic energy of the mode. This limit is adequate to study the effect of fast ions on

sawtooth stability. The new version of the CASTOR-K code calculates both the adiabatic part

δWHOT
ad and the non-adiabatic part δWHOT

na of the fast ions’ functional δWHOT taking into account

the large size of their banana orbits and potato orbits [15],

(3)

(4)

The adiabatic part of δWHOT traduces a fluid effect that is expected to be destabilizing. The non-

adiabatic part of δWHOT, in the limit ω / 〈ωD〉 → 0, is mainly due to the conservation of the third

adiabatic invariant and is usually stabilizing. Sawtooth stabilization can then occur if this stabilizing

effect is strong enough to overcome destabilizing effects. The CASTOR-K code allows δWHOT  to

be calculated as function of several parameters, like the fast ions’ temperature THOT, the location of

the ICRH resonant layer (λ = Rres | R), the safety factor on axis (or the q=1 radius assuming a fixed

q profile) and the fast ions’ radial profile. Thus, it is possible to analyse the dependence of sawtooth

stabilization by fast ions on any of these parameters. As an example, Fig.1 shows the perturbation

on the kink mode growth rate originated by the non-adiabatic part of δWHOT as a function of the

safety factor on axis (or q=1 radius having assumed a fixed q profile) and the fast ions’ temperature

THOT for a typical JET equilibrium with on-axis heating. Numerical results show that for relatively

small values of the q=1 radius r1, the stabilizing effect related with the non-adiabatic part of δWHOT

tends to disappear as THOT increases but when the q=1 radius is large the stabilizing effect does not

vanish. In this case the size of the fast particles’ orbits is still small when compared to that of the

q=1 radius r1 . Numerical simulations also show that when the q=1 radius is very small, the stabilizing

effect of particles with potato orbits (Pφ < 0) becomes increasingly important. The adiabatic part of

δWHOT gives a destabilizing contribution that increases with THOT.
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3. METHOD VARIATIONAL

Another possible approach is to solve the full variational problem making the necessary

simplifications. The dispersion relation including fast ion, resistive and finite Larmor radius effects

for a large aspect ratio circular cross-section is given by [3], [16-19],

(5)

where, Λ = - i[ω(ω - ω*e)(ω - ω*i)]
1/3/γ R ,γ R = S-1/3ωA

  is the resistive growth rate, S is the

magnetic Reynolds number, ωA is the Alfven frequency, ω*e is the electron diamagnetic frequency

ω*e  = (eneBr)-1dPe/dr, Pe and ne are the electron pressure and density respectively and ω*e  = ω*e +

0.71 (eBr)-1dTe/dr. The Euler gamma functions in equation (5) come from the inertial layer and are

evaluated at the  q = 1 surface. For a Maxwellian distribution in energy and a population characterized

by a single normalized magnetic momentum λ = l (on-axis heating), in the ideal limit the threshold

condition Im (ω) = 0, i.e. the condition for which the stability of the mode changes, is given by

(6)

with the corresponding value of βh given by,

(7)

When ω*i and ·ωDÒ are of the same order of magnitude, βh is a monotonic function of ω and equation

(6) has two solutions provided that γ 1 < γ M, where γ M is the maximum possible value for the right

hand side of equation (6). With this it is possible to determine the regions of stability for each branch

of the internal kink dispersion relation (5) in the space of parameters (γ 1 , ω*i , βh). The stability

diagram in the plan ( γ1 , βh ), with ω*i as a parameter, is presented in Fig.2.

To complete the diagram, the lines corresponding to sawtooth destabilization due to finite orbit

width effects and resistive effects are added to the diagram, since these effects are not included in

equation (6). Resistive effects are only important when γ1 is small, making the kink branch unstable.

Finite orbit width effects may reduce the efficiency of stabilization by fast ions also allowing the

kink branch to be unstable. With this, it is possible to analyse qualitatively (or predict) the stability

of the different branches during a discharge, if the evolution of the parameters (γ 1 , ω*i , βh) is

known or could be estimated. The growth rate of the precessional fishbone mode can be calculated

by numerical code that has been recently developed [20].
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4. APPLICATIONS - SAWTEETH

Recent JET experiments with ICRH only and low density plasmas have shown that sawteeth were

stabilized when the plasma density was increased above a threshold value [21]. Sawteeth were also

stable during the initial part of the ICRH ramp phase and were destabilized as the ICRH power

increased (see Fig.3). Comparing the equilibrium conditions and the mode eigenfunction calculated

by the MISHKA code no significant changes could be found between the situations where sawteeth

were stable and unstable. This suggested the loss of stabilization at low plasma densities should be

related with changes in the fast ions distribution function. Since the ICRH resonant layer was not

moved and changes in the radial distribution were not expected, changes in sawteeth behaviour must

have been related to changes in the fast ions energies. In fact, the Stix model [22] predicts the fast ions

temperature to be proportional to the ratio between the volume-averaged ICRH power density and the

plasma density 〈PICRH〉/ne. Calculations of the temporal evolution of the fast ions temperature THOT

have shown that sawteeth destabilization during the ICRH ramp phase coincided with an increase in

THOT and the later stabilization coincided with a decrease in THOT. Numerical simulations with the

CASTOR-K code have confirmed that for these specific discharges the stabilizing effect of δWHOT
na

over sawteeth decreases significantly as the fast ions temperature THOT increases, while on the other

hand the destabilizing effect of δWHOT
ad increases. It is then plausible that for sufficiently high fast

ions temperatures δWHOT
na becomes too small to overcome the destabilizing effects.

5. APPLICATIONS - FISHBONES

In the same set of experiments fishbone activity was also observed along with sawteeth. Periods of

frequent sawteeth crashes were always accompanied by high frequency precessional fishbones

with a frequency Re(ω) ≈ 〈ωD〉.When sawteeth were stabilized and frequent crashes ceased, these

fishbone bursts were gradually replaced by low frequency diamagnetic fishbones Re(ω) ≈ ω*i. The

occurrence of a monster sawtooth crash restored the original high frequency fishbones (see Fig.4).

Sawteeth, diamagnetic and precessional fishbones are all caused by different branches of the solution

of equation (5) and, in the ideal limit, the stability of these branches are governed mainly by the

parameters (γ 1 , ω*i , βh) . Measuring or estimating the evolution of the parameters (γ 1 , ω*i , βh)

it is possible to explain the behaviour of these instabilities. In these discharges the regime where

small sawteeth and precessional fishbones were observed must then correspond to the region of

Fig.2 where βh > βhc . In this region the kink branch as given by equation (5) should be stable, but

this equation doesnÕt take account finite orbit width effects. These effects may allow the branch to

be unstable. When the plasma density increases, the particles energy decrease reducing the size of

the orbits. With this sawteeth may be stabilized but the fishbone branch remains unstable if βh > βhc

. Stabilizing sawteeth stops the frequent crashes and both γ1 and ω*i are allowed to increase. On one

hand magnetic diffusion causes the radius of the q=1 surface to increase ( γ1 scales with r1
3  [23])

and on the other hand the absence of crashes allows the bulk ion profile to peak causing the

diamagnetic frequency ωi* to increase. The effect of an increase in ω*i in the graphic of Fig. 2 is to
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move up the line γ1 = ω*i/2 and to reduce the maximum γM moving down the line γ1 = γM. With γ1

increasing and γM decreasing the condition γ1 > γM will eventually be reached and when this happens

the low frequency branch coalesces with the high frequency branch forming a single coalescent

unstable branch. If γ1 > ω∗i/2 the coalescent branch is the kink-fishbone, while if γ1 < ω∗i/2 the

coalescent branch is the ion-fishbone. The coalescent branches behave like the fishbone branch for

high values of βh and like the kink or ion branches for low values of βh. To say it differently,

increasing βh pushes the coalescent branch towards the fishbone mode behaviour while increasing

γ1 ( ω*i ) pushes the mode toward the kink (ion) modes behaviour. Experimentally, after conditions γ1

> γM and γ1 < ω*i /2 were reached, the coalescent mode still behaves as the precessional fishbone

mode but this changes gradually as ω*i increases. During each burst, βh decreases temporarily inside

the q=1 surface since fast ions are expelled from the plasma core. If βh decreases enough, the mode

behaviour may change from precessional to diamagnetic and a burst that started as precessional ends

as diamagnetic. This mechanism is illustrated in Fig.5. As consequence, hybrid fishbones with

characteristics of both high and low frequency types that cover both ranges of frequencies are TH/5-

3 7 observed (see Fig. 4 around t= 9.6 s). Every hybrid burst corresponds to a single event (see Fig.6).

Continuing to increase the diamagnetic frequency ω*i brings the ion-fishbone branch to a regime

where none of the behaviours dominates. When this happens both types of bursts can be triggered

independently and they even occur simultaneously (see Fig.4 around t= 9.75s). Further increasing

ω*i the coalescent branch acquires the ion mode behaviour and only diamagnetic fishbones are

observed. Diamagnetic fishbones activity ends when a monster sawtooth crash occurs. Since γ1

scales with r1
3 , a monster sawtooth crash would occur when the q=1 radius r1 increases enough to

verify γ1 > ω*i /2. The crash flattens the bulk ions’ profile and reduces the q=1 size, restoring the

original values of both γ1 and ω*i. Precessional fishbones reappear and the whole cycle is repeated.

Since the increase of the diamagnetic frequency is the base for the fishbone’s cycle it is important

to estimate its evolution along the cycle. The frequency in the laboratory frame ƒ∗iLAB = ω*i /2π  +

ƒrot for the regime where frequent sawteeth crashes was estimated to be below 3kHz. Since the

diamagnetic bursts are initiated with a frequency around Re(ω) ≈ ω∗i  it is possible to observe that

this value increases to around 10kHz when diamagnetic fishbones are first observed and to near 20

kHz just before the monster sawtooth crash. This confirms that a steady increase of ω∗i  occurs

during the period of time between the crashes of monster sawteeth.

SUMMARY AND CONCLUSIONS

A numerical code, using a perturbative approach, was employed to accurately calculate the hot

particles functional δWHOT as function of several parameters for a realistic geometry. In the limit ω
/ 〈ωD〉 → 0 this allows the analysis of how sawtooth stabilization by fast ions depends on these

parameters. Results show that the stabilizing effect associated with the nonadiabatic part of δWHOT

vanishes for small values of r1 but not for larges values of r1 while the destabilizing effect associated

with the adiabatic part of δWHOT increases with THOT . It was also shown that particles with potato
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orbits ( Pφ < 0 ) become important if the q=1 radius r1 is very small. A variational approach was also

used for a qualitative analysis. This method requires several simplifications but allows one to predict

the stability of all branches, which depends mainly on (γ 1 , ω*i , βh). A new type of fishbones that

covers both high and low range of frequencies was identified. These hybrid fishbones are caused by

the coalescent ionfishbone mode.
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Figure 1: Perturbation on the kink mode growth rate  due
to the non adiabatic part  δWHOT na as function of  the fast
ions temperature and safety factor on axis for  a  fast
ions profile peaked in the center. Blue regions are
stabilizing and red destabilizing.

Figure  2:  Regions  of  stability  for  the  different  branches
of the internal kink dispersion relation in  the  space  of
parameters  (γ 1 , ω*i , βh).  In  regions  labelled with a K
the kink branch is unstable, with an  I  the  ion  branch  is
unstable  and  with  an  F  the  fishbone branch is unstable.
In region C the fishbone  branch  coalesces  with  one  of
the  low  frequency  branches (in this case the kink branch).

Figure 3: Temporal evolution of the electronic
temperature, ICRH power and safety factor on axis
during  the  RF  ramp  phase  in  Pulse No: 54306

Figure 4: Spectrogram of MHD activity in Pulse No:
54301
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Figure 5: Schematic diagram of the solutions of the
dispersion relation (5): Mode growth rate as function of
the  fast particles beta.

Figure 6: Temporal evolution of  B ~ for a single burst of
hybrid fishbones (Pulse No: 54300).
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