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ABSTRACT

Several topics in the study of Alfvén waves and their interaction with energetic particles are reported.

(1) In the second stability regime a new Alfvénic mode ( α-TAE) has been found that exists even in

the continuum with negligible intrinsic damping and its destabilization by energetic particles is

discussed. (2) The alteration of the continuum due to pressure compressibility is found to set a

lower frequency limit on the Cascade modes at the value √ 2CS/R. (CS is the sound speed). (3)

Neutral beams planned for ITER is found to contribute to a linear instability drive that is nearly

equal to the alpha particle drive and the inferred current generated may allow spatially extended

TAE eigenmodes to be excited. A quasilinear model is used to estimate alpha particle losses. (4)

The rate of frequency sweeping of TAE modes excited on MAST has been used to estimate internal

fields leading to results that are compatible with Mirnov coil mearsurements. (5) A numerical model,

developed to attempt to understand damping due to kinetic Alfvén excitations of TAE modes, did

not produce KAW’s in the plasma center and the dominant damping mechanism came from the

continuum resonance arising from the decrease of density at the plasma edge.

INTRODUCTION

The self-consistent response of energetic particles in fusion plasmas is a very important area to

understand when burning plasma conditions are achieved especially under advanced tokamak (AT)

operation. In this presentation we review some recent progress made on the study of the self-

consistent interaction of energetic particles with Alfvén waves which includes conditions of interest

in AT operation. In section 1 we discuss instability caused by energetic particles on a new Alfvén

wave (α-TAE) that can be generated in second stability operation. In section 2 we report on the

modification of the lower frequency range of the Cascade mode that is readily triggered in reversed

shear operation at finite β. In section 3 we discuss the effect of MeV beams, which are planned to

be used for current drive in ITER, on the TAE instability in a burning plasma. In this section a brief

description is also given of expected broadening of alpha particles due to their quasi-linear relaxation

to TAE excitation. In section 4 we discuss how internal fields have been inferred on MAST by

observing fast frequency sweeping of TAE modes. In section 5 we discuss a relatively simple

numerical model that attempts to understand the source of damping due to mode conversion that

has been reported in several large numerical codes.

1. NEW TOROIDAL ALFVEN MODES

Alfvènic instabilities have been investigated in the high- β second ballooning stable regime using

a gyrokinetic-MHD hybrid simulation code. Here, b is the ratio between plasma and magnetic

pressures. The physical model is formulated for a two-component (core and energetic) plasma

employing the high-n ballooning-mode representation and the (s, a) model equilibrium where s is

the magnetic shear and a  the standard plasma pressure gradient parameter. The core component is

treated as an ideal MHD fluid, which supports the Alfvén eigenmode while the energetic component

provides the kinetic instability drive. We find a new type of discrete Alfvén -ballooning eigenmode,
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the α-TAE, which is destabilized by energetic particles via wave-particle resonances. This mode is

trapped inside the α-induced potential wells and it experiences negligible continuum damping even

at frequencies far from the toroidal Alfvén frequency gap [1]. The mode exists even without energetic

particles as distinguished the modes from the EPM (energetic-particle modes). Instability is driven

by the typical resonance of a wave with the precessional and/or bounce frequencies of the energetic

particles. For an axisymmetric toroidal plasma with a large aspect ratio (i.e., ε = a/R « 1) and

shifted circular magnetic surfaces, the Alfvén -ballooning instabilities are governed by the generalized

vorticity equation [2,3],

(1 + 2ε0cosθ)

ω2
A0

∂2δψ
∂t2

∂2δψ
∂θ2

q2R2

f 1/2

4πqE

c2
=             - (V + Vρ) δψ -                         Ωd J0δG〉,〉

where ωA = VA /(qR), VA is the Alfvén speed, ε0 = 2(e + d∆/dr), D is the Shafranov shift, q is the

safety factor, qE and mE are, respectively, the charge and mass of energetic particles, ωd = ωk + ωp

= kΘΩdωk, wk and ωp are, respectively, the curvature and gradient drift frequencies of energetic

particles, J0 = J0 (√f kθv⊥/ωc) is the Bessel function, f = 1 + [s(θ - θk) - α sin q]2, α = αc + αE, V =

(s- α cos θ) 2/f 2 - α cos θ/f  is the potential due to the ballooning curvature effect, and Vρ is the

finite Larmor radius correction of energetic particles to V; with - ∞ < θ  < ∞ being the extended

poloidal angle coordinate along the magnetic field. Note that in Eq. (1), the left-hand side is the

inertial term and the right-hand side consists of the field-line bending (first term), the ballooning

drive (second term), and the energetic-particle kinetic compression (third term). The energetic

component, described by the function δG, is governed by the gyrokinetic equation [2,3]. The energetic

particle dynamics is determined by the bounce and precessional motions, along with the free energy

source in both configuration and velocity spaces. The kinetic excitations of  α-TAEs are displayed

in Fig.1 for various poloidal wavenumbers, denoted by kθ ρA0 with kθ = nq/r, and a = 2.0. The

unstable mode structures corresponding to, for example kθ ρA0 = 0.32 are essentially the same as

that of the  α-TAE trapped in the potential well as shown in Fig.2. The excitation mechanism is

characterized by the bounce-precessional resonance condition wr - vd - K wb = 0 with K being an

integer [2], which maximizes the kinetic drive in Eq. (1). With the Maxwellian distribution function

for the trapped energetic particles, it is found that the K = 2 resonance dominates the α-TAE excitation

shown in Fig.2. The quasi-marginal stability of α-TAE is further demonstrated by essentially

thresholdless excitations with respect to the energetic-particle drive. In addition to the lowestorder

α-TAE, with frequencies wr / wA0 ≈ 0.4 trapped in the dominant potential well, a higher-order α-

TAE, trapped in the neighboring higher-order well, is destabilized with frequencies wr / wA0 ≈ 0.3

for kq rA0 ~ 0.1 in Fig.1. Due to the lower potential barrier, the higher-order α-TAE experiences a

relatively stronger continuum damping via wave energy tunneling and thus requires a small but

finite excitation threshold in the energetic-particle drive. Meanwhile, the K = 1 bounce-precessional

resonances are observed for this lower-frequency α-TAE.
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In summary, Alfvén instabilities in the second ballooning stable regime are predicted to be dominated

by the kinetic excitations of the trapped discrete α-TAEs, which can experience either negligible or

finite but small continuum damping.

2. LOW FREQUENCY RESPONSE OF CASCADE MODE

In shear reversed tokamak discharges containing magnetically trapped energetic particles it is

common to see multiple Alfvèn cascade modes [4,5] that rise in frequency to the TAE gap as the

minimum value of the safety factor, q0, decreases in time. Theoretical [6,7] and numerical studies

[8,9] have shown that the mode is established in a plasma about the shear reversal point. The theory

predicts that at very low values of plasma beta the Alfvèn cascade modes are localized about q(r)=q0

and follow an approximate dispersion relation ω=|k|||VA with k|| = (n – m/q0)/R until the TAE

frequency, ωTAE =VA/(2q0R), is reached. The theory gives strong preference to modes with rising

frequency, corresponding to k|| < 0, which is consistent with most of the experimental data [4,5]

where predominantly rising frequency modes are observed [8,9]. Observations also reveal that the

modes never reach zero frequency. The spectral lines either disappear at low frequencies or they

approach a common minimum frequency for several modes as shown in Fig.3, a less frequent

experimental case where downshifting frequency is observed. At low frequency continuum damping

[10] together with other damping mechanisms can readily account for mode suppression but not for

spectral line bending seen in Fig.3 at the lowest frequency. The latter requires a different underlying

mechanism associated with finite plasma beta and geodesic curvature.

The geodesic curvature from toroidal geometry precludes shear Alfvén perturbations from being

strictly incompressible, giving rise to pressure perturbation in a finite β plasma. Significant modification

of the Alfvén continuum due to plasma pressure was found numerically in Ref. [11]. This finding is

apparently relevant to what is seen in Fig. 3 because it appears that the cascade frequency tends to be

close to the continuum, except when the mode reaches the TAE gap. However, Ref. [11] does not

immediately give the precise physics reason for the relatively strong pressure effect on low-frequency

cascades. This calls for analytical treatment of the problem [12], which enables parametric comparison

of the underlying mechanisms and identification of the dominant one.

In addition to the geodesic effect, there are two more pressure effects on shear Alfvén waves,

which are convection in presence of an equilibrium pressure gradient and the toroidicity induced

coupling between shear Alfvén waves and acoustic modes. Such coupling occurs at ω  = CS /Rq0,

where locally the shear Alfvén frequency matches the acoustic frequency for a neighboring poloidal

mode number.

The geodesic effect can be clearly separated from both the convection and the acoustic coupling.

In contrast to the convective mechanism, the geodesic effect involves plasma compression, and the

resulting characteristic frequency scales as β 1/2 rather than β  with plasma pressure, which makes

the convective mechanism insignificant at sufficiently low pressure. Ironically, plasma compressibility

can be difficult to treat in MHD codes, which recently led to an artificial exclusion of the geodesic

effect from the simulations of cascade modes in low-beta plasma in favor of less relevant but more
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easily incorporated convective effect [13]. The key distinction between the geodesic compressibility

and acoustic coupling is that geodesic compression occurs without plasma displacement along the

magnetic field lines, and the corresponding characteristic frequency is √ 2 q0 times greater than ω  =

CS /Rq0. As a result, the mode phase velocity is greater than the ion thermal velocity even in isothermal

plasma, which allows the mode to avoid strong ion Landau damping.

In deriving the mode equation for frequencies below the TAE gap we use the large aspect ratio,

low β, and low shear simplifications. After suitable algebra, the MHD equations in the large-m

limit

reduce to a form that is diagonal in the poloidal harmonic m . Using a normalized radial coordinate

x ≡m(r-r0)/r0 relative to the radial point, r0 , of zero shear the governing equation for the eigenmode

in the region –1/2 < m – nq0 <1/2 is found to be,

d ωq0R

dx

d

dx
 S + x2            Φm -  S + x2 - Q                               Φm = 0, 

VA ( mn - nq0 )

with the following expressions for the quantities S and Q in the limit δ ≡ 1 / (2q0
2)<< 1:

d2q0m

4 ( m - nq0 )
S =                       q0  r0

2        
-1  

 ω2 ( 2q0 R / VA )
2 - 4 ( m - nq0 )

2 - 8q0
2 Cs

2 / VA
2  

dr2

d2q0Q = q0  r0
2        

-1 

  -  VA       < nfast ion >  +  
 .dr2

4„e

cB

2m (m - nq0) (r0  / R + 2˘’)

1 - 4 (q0 n - m)2

R

r0

r0

R

d

dr

At x=0, the Alfvén continuum frequency, ωcont, corresponds to S=0, so that the minimum

continuum frequency is ωmin =   2 √ CS /R. All low-frequency eigenvalues of the mode equation are

close to wcont. If 0 < (m-nq0) < 1/2, the cascade eigenmode is localized around x=0, and its

eigenfrequency is somewhat greater than wcont as seen in Fig.4 (this figure shows eigenfrequencies

for a more general set of equations that remains valid even when the frequency enters the TAE

band). It is worth mentioning that Eq.(3.1) does not have suitable solutions in the region –1/2 < m

– nq0 <0 where the mode would exhibit a down sweep. Similar to the upward sweeping spectral

lines, the atypical down sweeping lines in Fig.3 follow the time evolution of ωcont but their precise

interpretation still remains to be developed.

In applying the theory to the JET experiments we note that q0 typically varies from 4 to 2 in the

shear reversed discharges, so that δ  is indeed small in such experiments. In Fig.3 we see that the

minimum frequencies are an appreciable fraction of the TAE frequency for quite low beta. The

lower limit of the continuum frequency, which is independent of n or m number, appears to be the

main governing factor for determining the minimum frequency in Fig.3.
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3. EFFECT OF NEUTRAL BEAM ON TAE’S IN ITER

The injection of 1 MeV neutral beams is being planned for ITER as a source of heating, current

drive, profile control and for establishing transport barriers [14]. These neutral beams are super-

Alfvénic so that they are destabilizing to TAE modes [15]. Though typically the beam pressure is

0.2-0.5 of the alpha particle pressure, the linear universal instability drive of the beam is comparable

to the alpha particle drive because the phase space density at the particle- wave resonance for a

given beta is larger for a beam distribution than for an isotropic distribution. In addition the pitch

angle anisotropy of the distribution allows for an inverted energy distribution (i.e. δf/δE > 0) to be

established. The appropriate distribution function, caused by classical slowing down and pitch

angle scattering processes, is generated by the Monte Carlo code in TRANSP. However the intrinsic

noise of the code makes it difficult to replicate a smooth distribution function that can be used in the

stability codes, such as the NOVA-K code. Consequently simplifying theoretical models were

developed based on beam injection peaked about some pitch angle when there is relaxation due to

electron and ion drag and pitch angle scattering. Satisfactory replication of the distribution predict

by TRANSP was obtained as shown in Fig.5.

Typically global TAE modes are more difficult to self-excite than core localized TAE modes as

the global mode is damped by continuum resonances that arise within the inner profile of the

plasma. However, with neutral beam off-axis injection, we have found that the q-profile, due to the

current induced by the neutral beams, can be fairly flat at r/a ~ 0.4, where the energetic particle

drive is largest. The relatively small value of shear (s < 0.3) that exists there prevents an appreciable

component of the TAE mode structure from propagating to smaller radii [16], where continuum

damping would arise, but allows a global mode structure to arise outside this radius as is seen in the

mode shown in Fig.6. The results of the stability analysis for a nominal ITER case is shown in Fig. 7. We

see that by neglecting the beam drive the system would be barely stable for the plasma temperature

~20KeV, but with the inclusion we find that the system is significantly above marginal stability. A

detailed break-down of the principal partial growth rates,  γj/ω(%), for the n=10 TAE mode give: -0.18

from electron collisions, -0.61 from ion Landau damping, -0.43 from radiation of KAW’s, 0.82 from

alpha particles, 0.71 from neutral beams. Summing the entire result give γtotal/ω=0.31.

A heuristic quasilinear model was developed to attempt to assess the nonlinear consequences of

the TAE instability [17]. The model builds upon the 1-dimensional model analyzed in Ref. [18]

while incorporating the point that only about a quarter of the energetic particle distribution function

has undergone relaxation from the resonant particle interaction [19]. The details of this model can

be found in the appendix of Ref. [17]. Typically the instability drive is peaked off-axis and the

system is locally stable near the axis (due to ion Landau damping) and near the edge due to large

electron collisional damping. Under the assumptions that the stability conditions are spatially local

and that the quasilinear theory produces overlap of the particle-wave resonances, it follows from

that linearly unstable region will spread out radially. However, for a system not too much above the

instability threshold the broadened instability band can still remain inside the plasma. The theory

allows us to estimate the relaxed distribution function when the outer boundary of the unstable
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region is less the edge radius α. However, if the outer boundary of the edge region reaches the edge,

alpha particles are directly lost and we can determine the fraction of alpha particle loss as a function

of βα which increases with ion temperature as shown in fig.8.

4. SPECTRAL DETERMINATION OF INTERNAL FIELDS DUE TO FREQUENCY

SWEEPING

Rapid up and down frequency sweeping has been observed in several tokamak experiments e.g.

[20,21] where TAE modes have been excited by energetic particles. A particularly clear example of

thiseffect has been seen in the MAST data shown in Fig.9. A plausible mechanism to explain such

sweeping phenomena is the formation of phase space structures in the form of holes and clumps. A

general theory, together with numerical simulation studies, has been developed to describe the

evolution of phase space structures [22] for waves near marginal stability where the wave exists in

the absence of energetic particles and the marginal point is determined by the balance of the perturbing

energetic particle drive and background dissipation. When the collisionality is sufficiently small, a

near threshold theory [23] shows that the nonlinear evolution is explosive, which implies that the

ultimate saturation level is independent of the closeness to marginal stability. Instead the amplitude

of the saturated induced field is dependent on the strength of the energetic particle drive and

insensitive to the damping mechanisms. The saturated field amplitude (expressed in terms of the

nonlinear trapping frequency of a typical resonant particle  ωb ∝ δBr
1/2(where δBr is the perturbed

radial magnetic field) is found to be ωb = C2 γL , while the updown frequency sweeping shifts are

found to depend on the internal field, δω = C1 ωb
3/2 δt1/2. For a given physical system the

dimensionless parameters C1 and C2 can be extracted by examining the response of simulation

codes, such as the HAGIS code [24]. An example of the frequency sweeping observed in this

simulation is shown in figure 10 where we see up-down frequency sweeping with the frequency

shift fitted to the theoretical evolution. Using the MAST geometry, the MISHKA code was employed

to find the appropriate TAE eigenfunction for use in the HAGIS simulations which predicts the

evolution of theamplitude and phase. The HAGIS code also enabled the direct extraction of the

relationship between the nonlinear particle trapping frequency and the perturbed magnetic field

amplitude δBr . Through this approach [25] it was inferred that the observed MAST frequency

sweeping mode has a peak internal field amplitude of δBr ≈ 2 × 10-4T , while the experimental

Mirnov coil measurements, together with the MISHKA code TAE eigenfunction inferred a peak

field amplitude of δBr ≈ 5 × 10-4T. This result indicates that the frequency sweeping data gives a

reasonable estimate of the internal field. However, the methodology of comparison is still needs

refinement and is under development.

5. DAMPING DUE TO KINETIC ALFVEN WAVE

A key issue for predicting Alfvèn instability is the correct determination of background damping

mechanisms and it is recognized that conversion to radiating KAW’s plays a crucial role. A recent

experimental test of a TAE damping model showed that a physical understanding of the damping
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mechanism is still lacking [26]. In particular, the measured damping rates of an n = 1 TAE mode in

JET are much larger than the radiative damping rate of KAW’s as calculated locally by the NOVA-

K code [27]. On the other hand, global gyrokinetic calculations of the PENN [28] and CASTOR [9]

codes yielded damping rates comparable to experimental values for low damping rates, |ω / γ| ≤
2%. In the PENN code the principal damping mechanism is due to mode conversion to a KAW near

the center of plasma [28] while the results of CASTOR code showed that the damping comes

mainly from edge region [9] due to mode conversion to a KAW there. In this work, we develop a

model for a large aspect ratio tokamak and show that, when the density at the edge vanishes, that

continuum resonance arises near the edge to produce mode damping rates comparable to the

measurement and that no mode conversion to KAW is found near the center of plasma.

We start from coupled reduced kinetic equations for TAEs in a large aspect ratio and low beta

tokamak and find:

2
⊥gKm  

2
⊥Φm + Lm Φm = Lm-1 Φm-1 + Lm+1 Φm+1

˘ ˘ 

1
Lm =    

 

   r (pω2 - k2
Pm) - (f - k2

Pm)      + (k2
Pm)   , 

r

1

r

d

dr
1

r

d

dr

d

dr

m (m - 1)

r2

d

dr

m2

r2

Lm-1 = rε̂ pω2  + 2pω2 ˘’

1
Lm+1 =    

 

      rε̂ pω2  + 2pω2 ˘’      , 
r

d

dr

d

dr

m (m + 1)

r2

3

8

3

8
 gKm = k2

Pm       ρ2
i  +  ρ2

s                  1 - 2x2
e   - ixe exp (- x2

e  )   - iηω

where ̂ ε   = 2 (r / R + ∆’ ),  xe = ω / kPve, ρ, ρi, ρs are respectively, the mass density, ion Larmor radius, and

rs = (Te / Ti )1/ 2 ri and h  the plasma resistivity (time c2 in cgs units). Here the operator Lm corresponds to

the ideal MHD equation for shear Alfvèn waves in a cylinder with m being the poloidal mode number, and

operator Lm±1 arises from toroidicity. Finally the fourth-order term gKm comes from finite ion gyroradius

effects, and the parallel electric field due to kinetic electron response and resistivity η.

Equation (1) is solved as an eigenvalue problem using a cubic finite element method. We- consider

parameters and profiles of a JET discharge (#38573) at t = 5 sec: B = 2.56 T, ne(0) ~ n i(0) = 1.75 ×
1013cm-3 , T (0) = 2.6KeV, Ti (0) = 2.0KeV, q(0) = 1.36, and q(a) = 4.6. In Fig. 11 we exhibit the

damping rate of the n = 1 TAE for two cases: the first with finite edge density ni (a) / ni (0) = 0.07

and the second with zero edge density. In the first case, the n = 1 continuum spectrum gap structure

is completely open so discrete TAE modes can exist without wave resonance from the Alfvèn

´
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continuum. In this case, we find that there is no evidence of any mode conversion to KAW near the

center of plasma. Only negligible mode conversion occurs near the q = 1.5 gap where the main

MHD TAE is located. The resultant radiative damping rate is very small γd / ω < 0.1%  (see lower

curve in Fig.11) due to small ρi and ρs, consistent with the local model of radiative damping.

Furthermore, at the edge no mode conversion to KAW is found for the boundary condition used

(i.e., tangential electric field being zero at the plasma edge with a conducting wall). For some other

type of boundary conditions, we can show both analytically and numerically that mode conversion

can occur near the edge which results in damping rates comparable to the experimental values.

Therefore it remains a possibility that additional damping occurs from a more accurate modeling of

the plasma-vacuum interface where additional mode conversion and dissipation may occur.

We now consider damping in the second case where continuum resonance occurs near the edge

where ni(a)=0. The calculated damping is shown in upper curve in Fig. 11. We observe that in this

case the damping rate is much larger than the damping for the case of finite edge density. The

dependence of damping with q(0) is correlated to where the eigenmodes peak relative to the edge,

with larger damping for modes nearer the edge. The damping is comparable to the experimental

values ( γd / ω ≈ 1%) . This result indicates that edge continuum damping is a plausible mechanism

for the damping observed for the n=1 TAE modes in JET.

In conclusion, we find that our modeling does not produce any mode conversion from TAE to

KAW’s near the center of plasma for the parameters and profiles of a JET plasma. There is also

insignificant mode conversion near the edge plasma when there are no continuum resonances there.

However, accounting for a low density edge region typically allows continuum damping and may

account for the observed damping of n=1 modes in JET plasmas.
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Figure 1: Real frequencies (solid line) and growth rates
(dashed line) versus kθ  ρA0 for s = 0.5, α = 2.0, ε∼ q = 2.0,
βE0 =.06, VE0 / VA0 = 0.7, LP0  / R = -0.1, η = 1.0,  ηE =
1.0, θb ∈ [800,1200]

Figure 2: Potential V (solid line) and mode structures of
the αTAE (squares) and its kinetic excitation (dashed line)
versus θ  for the case of kθ  ρA0= 0.32 in Fig. 1.

Figure 4: Effect of plasma pressure on mode frequency for n = 3
and m= (12, 11) as a function of the safety factor q

0
. Solid curves

represent the MHD continuum and the triangular and circular
points are for beta values of 0.005 and 0.0015 respectively.

Figure 3: Spectral lines observed on JET show bending
at lowfrequency around 43.8s for several n-modes.
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Figure 5: Ion pitch angle distribution, f c ,as function of
the pitch angleχ.The different pitch angle region
correspond to: (i) co-passing beam ions; (iii) trapped
ions: (iii) counterpassing ions. Curve (a) is the
distribution predicted from the analytic model, while curve
(b) is the distribution function that is generated by the
TRANSP Monte-Carlo algorithm.

Figure 6: Global TAE eigenmode. Note eigenmode is not
excited in the central region.

Figure 7: Toroidal mode number dependence of the TAE
growth rates for the cases with the drive from alpha
particles alone (squares) and from both the NBI ions and
alpha particles (diamonds).

Fig. 8: Fraction of alpha particle loss as a function of
the alpha particle beta value as the core ion temperature
varies from 20kev to 24.4 kev with the plasma
densityconstant (solid curve) or the plasma beta constant
(dotted curve).
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Figure 9. Frequency sweeping observed in MAST experiment, Pulse No 5568

Figure 10: Frequency simulation of the MAST from the
HAGIS code showing up-down frequency splitting from
phase space structure formation.

Figure 11: Relative continuum damping rate, γ / ω,
versus q(0).
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