
G. De Tommasi, F. Piccolo, F. Sartori, and JET-EFDA Contributors

EFDA–JET–CP(04)06-43

A Flexible and Re-useable Software
for Real-Time Control Applications

at JET

.

A Flexible and Re-useable Software
for Real-Time Control Applications

at JET

G. De Tommasi1, F. Piccolo2, F. Sartori1,2, and JET-EFDA Contributors*

1Associazione EURATOM-ENEA-CREATE sulla fusione, Via Claudio 21, 80125, Napoli, Italy
2Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

* See annex of J. Pamela et al, “Overview of Recent JET Results and Future Perspectives”,
Fusion Energy 2002 (Proc. 19th IAEA Fusion Energy Conference, Lyon (2002)).

Preprint of Paper to be submitted for publication in Proceedings of the
23rd SOFT Conference,

(Venice, Italy 20-24 September 2004)

“This document is intended for publication in the open literature. It is made available on the
understanding that it may not be further circulated and extracts or references may not be published
prior to publication of the original when applicable, or without the consent of the Publications Officer,
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA,
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

1

ABSTRACT

The fast growth of the JET real-time control network and the increasing demand of new systems

have been the triggers that started the development of the JETRT software framework. This new

architecture is designed for maximum reuse and is particularly suited for implementation of both

real-time control and data acquisition systems in complex experimental environment such as JET.

The most of the software is the same in all applications independently from the platform. The

varying part is the project specific algorithm, which is also compiled into a separate software

component, in order to achieve a separation from the plant interface code. Thanks to this design

choice reliability is maximized, development costs have been reduced and even non-specialist

programmers can easily contribute to the real-time project. JETRT also provides an integrated set

of debugging and testing tools, some of them well integrated with the Matlab environment. This

feature besides the framework portability among different platforms allows to perform the most of

test and validation phase on a desktop PC running Window, reducing significantly the commissioning

time of a new real-time system.

INTRODUCTION

At the heart of the JET machine, several real-time control, measurement and protection systems

collaborate in order to satisfy the most sophisticated experimental needs. A group of these systems

uses the JETRT software architecture: the Extreme Shape Controller (XSC [1],[2]), parts of the

Vertical Stabilisation control and data acquisition systems, the Error Field Coil Controller (EFCC

[3]). Many others can be found among the Real Time Data Network (RTDN [4]) processing nodes:

the one measuring plasma internal parameters, the density and q profile estimator and two different

real-time equilibrium codes.

During the JETRT development the main design aims were to separate the algorithmic part of a

real-time application (User Application) from the interface software (JETRTApp), to standardize

the application development, to achieve portability among the desired computer platforms

(VxWorks/Windows/RT-Linux), and, as a result, to increase the code reusability and reduce the

debugging efforts. The User Application is the central part of the target application and contains all

the sophisticated mathematical algorithms that implements the desired behaviour of the overall

realtime system. In order to interface with JETRTApp, this software module must be organized

according to a set of strict designing and programming rules. These are aimed at making the User

Application both a portable and reusable module that has no references to either the hardware or

the operating environment. A further benefit is that any programmer with little real-time experience

and no knowledge of the platform can still implement it. Working together JETRTApp and User

Application implement the desired real-time system.

The next section gives an overview of the whole framework, while section 2 introduces JETRTApp

architecture. Section 4 deals with the User Application component. Eventually some concluding

remarks are presented.

2

2. JETRT OVERVIEW

The JETRT framework is a cross-platform class-library designed with the aim of helping

development of real-time applications and providing validation tools to help the testing phase.

Most of the time developing a real-time system is spent testing the program. The task is clearly

hindered because of the limited debugging facilities present in many target systems. In fact, even

if several products enhancing the testing capabilities for the various platforms are available from

the market, for the experimental fusion applications the problem mostly lies elsewhere. The

commissioning time is actually spent more on the algorithmic part of the code than in the interfaces

or the real-time synchronisation, because whereas the latter part can be tested at leisure in the

laboratory, the former needs the running of a complete experiment in order to be tested. For this

same reason, the mathematical algorithms are normally developed separately on specialised

simulation environments like Matlab, where many test and display facilities are available.

Having achieved the separation of the algorithms (User Application) from the interfaces

(JETRTApp) it was then very easy to use the same application as a plug-in within any simulation

environment, thus allowing the testing of the code with the same tools used in the early mathematical

development phases. This is the major reason why the User Application must be written as a

portable application. A plug-in based open-loop simulator Application Tester (Fig.1) is the most

used testing tool. It uses the information stored in the JET database containing the measurements

from old experiments, to reproduce the data that the algorithm would have processed if it had been

running at that time. Despite not been perfectly adequate for testing closed loop systems, this method

normally allows finding most of the problems in the code before testing it on the plant. A more

thorough test can be performed by loading the application module into Simulink, using the S-

function interface [5]. In this environment it is either possible to compare directly the original

model of the system with its own implementation, or to execute the User Application code in

closed loop using a model of the plant. A data feeder based on the ATM Real-Time Data Network

[4] has been developed to test the applications on their target platforms. The feeder downloads,

from the JET database, all the experimental inputs needed from the User Application and sends

them to JETRTApp via the real-time network.

3. JETRTAPP ARCHITECTURE

JETRTApp is a generic single-processor real-time application, which has been designed using object-

oriented techniques. Its structure is very modular: it makes heavy use of threads to handle the

different interfaces and of plug-ins to allow both working with different hardware and performing

different algorithms. The off-pulse interfaces are the origin of much of the technical complexity of

the real-time applications. Typically before and after every pulse the Countdown System sends to

JETRTApp change of state requests in order to synchronise the evolution of the various JET

subsystems. As soon as the scientists have finished pre-programming a new experiment, the Level-

1, the plant management system that provides customized and automated user interface, sends a

3

packet containing new parameters to each JET subsystem. Finally, the information collected has to

be available for sending to GAP (General Acquisition Program) data management system. JETRT

framework has been created to help working in this environment, answering the need for a fast and

reliable deployment of new systems.

The block diagram of a generic real time application in Fig. 1 shows the JETRTApp connections

between the JET external systems the other JETRT components.

The I/O Drivers plug-in system allows the customisation of the data acquisition hardware. It is a

collection of high level drivers that act as bridge between the low-level drivers and JETRTApp. The

User Application implements the specific real-time control and diagnostic algorithm.

The Runtime Data block is the information exchanged between JETRTApp and its plug-ins

during the real-time execution. The Configuration File, is a structured text file whose hierarchical

structure reflects the internal JETRTApp structure. Following the setting in the file, the system

initialises the necessary I/O Drivers, loads the desired User Application plug-in, allocates the data

collector memory and starts the interfaces with the external systems.

Figure 2 shows a block diagram of JETRTApp where the five most important components can be

easily noticed:

• The Supervisor State Machine.

• The Real Time Thread.

• The Real Time Data Collector System.

• The External Boards Interface.

• The Communication Threads.

The Supervisor State Machine is a finite state machine used to manage the overall state of the

JETRTApp. It changes the state according to a set of rules and in response to external (start of the

countdown, pulse trigger, end of JET pulse, start of data collection) and internal events (errors

during the real-time computations). This state controls the overall functioning of the program,

whether it is on-line or off-line, whether it is ready to operate or not. It also synchronizes the

various threads within the application for instance disabling the data collection and the Level-1

parameters processing during the real-time phase.

The Real Time Thread is responsible for the calling of the User Application plug-in during the

JET pulse, while the Real Time Data Collector System stores all the requested data sending them to

GAP after the end of pulse.

The External Boards Interface manages all the I/O boards by the means of the I/O drivers plug-in

common interface.

The Communication Threads handles all the communications between JETRTApp and the JET

computing environment. It starts a thread for each system it is communicating to, and tries to keep

the socket open until the remote system shuts it down. This means that there is a thread handling the

messages for each external system. This component is a container for specific protocol message

4

handlers. As soon as a message is received, it is dispatched to each of the handlers until one is

willing to accept it and complete the transaction.

4. THE USER APPLICATION

The User Application is normally a highly sophisticated mathematical code, implementing

measurement, control or diagnostic system. Most of the time, the scientist writing the program does not

want to know the technical details of the external world interfaces, since from their point of view the

algorithm is simply a function reading some data and producing results. With this new system, this is now

possible, since these details are hidden away in the JETRTApp. The interface of the User Application

determines the complexity of the interaction between the user code and the external world.

After several attempts at finding a complete Application Program Interface, the present version of

the program implements the functions described in Table 1. The User Application is implemented as

a C++ dynamic loadable object. Once the module is loaded, it is initialized calling Init(). The Level-

1 parameters processing is left completely to the application, which must provide a proper

MessageProcessing() function. The data acquisition is active during the off-line phase. Data is collected

at a lower rate and passed to the User Application using the OfflineProcessing() call. This call can be

used to either make sure that the system outputs are set to safe values or simply to keep monitoring the

inputs. Before entering the on-line phase Check() is called in order to verify the willingness of the

User Application to begin the real-time action. After the PulseStart() is called and the experiment

starts, JETRTApp performs these cyclical operations: first the code is synchronized to the JET timing,

the acquisition is then completed, the MainRealTimeStep() is called, then the data is written to the

outputs, the SecondaryRealTimeStep() is called and finally the data is stored on the data collectors.

If during the on-line phase the User Application generates a non-recoverable internal error (by using

a special call-back), then the system stops executing the standard sequence, and instead just calls the

SafetyRealTimeStep() between the data input and data output.

CONCLUSION

A software architecture designed to standardize real-time applications at JET and to reduce the

deploying time has been presented. Thanks to the separation between the control algorithm and all

the common subsystems needed by a real-time application, JETRTApp has standardised the

development cycle to create a new real-time system: only a new User Application plug-in has to be

written and several parameters have to be set in the Configuration File.

JETRTApp code runs both on Motorola/VxWorks, which is the plant platforms, and on INTEL/

WinNT4 by simply recompiling it. The latter is used as a powerful simulation and testing platform,

allowing even to run the User Application within Matlab/Simulink environment. Eventually the

code of a new system is well tested before the deploying and this will reduce the request operational

time for the commissioning.

5

JG
04

.5
72

-1
c

A Generic JETRT real-time application
in the JET enviroment

Data
storage

Alams

Supervisor

Alams
mimics

General acquisition
program

External
systems

Countdown
system

Level 1
Interface JETRTApp

Config
file

Level 1
Analogue and digital

acquisition

Runtime
Data

User app
plug-in

I/O drivers
plug-in

The user application plug-in

User app
plug-in

JETRT framework teast and validation tools

Windows platformVxWorks platform

JET
pulses
data

ATM RTDN data feeder

JETRTApp

Open-loop
simulator

User app
plug-inI/0 drivers

plug-in
User app
plug-in

User app
plug-in

Simulink
closed-loop

simulator

Simulink
plant
model

REFERENCES

[1]. G. Ambrosino, M. Ariola, A. Pironti, F. Sartori, A New Shape Controller for Extremely Shaped

Plasmas in JET, Fusion Engineering and Design 66-68 (2003) 797-802.

[2]. M. Ariola, G. De Tommasi, A. Pironti, F. Sartori, Controlling extremely shaped plasmas in

the JET tokamak, 42nd IEEE Conference on Decision and Control, Hawaii, 2003.

[3]. L. Zanotto, F. Sartori, M. Bigi, F. Piccolo, M. De Benedetti, “A new controller for the JET

error field correction coils”, 23rd Symposium on Fusion Technology, Venice, Italy, 2004.

[4]. R. Felton et al., "Real-time plasma control at JET using ATM network," Proceedings of 11 th

IEEE NPSS Real Time Conference, Santa Fe, 1999, pp. 175-181.

[5]. The Mathwors, Writing S-function, Version 5, The Mathworks Inc., 2003.

Figure 1: JETRT framework overview.

http://figures.jet.efda.org/JG04.572-1c.eps

6

JG
04

.5
72

-2
c

JETRTApp

Communication
threads

External
Sysrem

External
Sysrem

External
Sysrem

Server n

Server 2

Server 1

Signals
data base

Real time data collection system

Data collector 1 Data collector 2 Data collector n

User
application

I/O
drivers

I/O drivers Timing devices

Run time
data buffer

Real-time thread

Input service Output service Timing service

External boards interfaces

Supervisors state

Figure 2: JETRTApp connections between the other JETRT components and the external systems.

http://figures.jet.efda.org/JG04.572-2c.eps

