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ABSTRACT.

Millimeter-wave diagnostics at JET, mainly reflectometry, are employing state of art electronics

but are limited in performance by the existing waveguides and antenna system that are inadequate

and obsolete. The use of long runs of waveguides with high losses and non optimized antennas lead

to difficult measurement conditions for reflectometry. The new access system presented in this

article has been designed to improve the performance of reflectometry measurements and enable

the installation of antennas for oblique viewing ECE. These two new antennae will allow the ECE

radiation to be collected at different angles with respect to the magnetic field. This oblique ECE

set-up [1] is expected to be extremely useful in improving the interpretation of ECE temperature

measurements in fusion experiments with significant additional heating. For reflectometry there is

an urgent need to improve the edge density measurements as both the lithium beam and Thomson

scattering exhibit resolution limitations at lower densities.

The project proposal states that the expected improvement in reflectometry S/N ratio is 30dB. If

realized, this will allow broad band reflectometry, for the measurement of the electron density

profile, for the first time in JET.

1. INTRODUCTION

The project aims to install a millimeter-wave access system consisting of six antennas/waveguides

arranged in a cluster of 3 x 2 (horizontal x vertical) at the plasma end, for probing the mid-plane

of the JET plasma. Four of the waveguides, grouped as an inverted ‘T’, are dedicated to reflectometry

measurements while the remaining two are employed to collect the emitted radiation. This layout

appears to be optimum for both diagnostics: the location of the reflectometry waveguides offers enough

flexibility to perform edge density profile as well as correlation measurements, and two observation

angles would be the minimum configuration required to satisfy the purpose of the Oblique ECE

diagnostic in JET.

Access to the plasma will be done using a port with direct line of sight to the plasma: a limiter

guide tube. This port allows a complete bundle of antennas and waveguides to be inserted from the

outside of the vessel and its height is very close to the magnetic axis of JET. These four antenna

apertures take advantage of the excellent coupling of the propagating HE11 waveguide mode to the

free-space Gaussian beam which is also inherently broadband. ECE measurements, with a wider

frequency range, 70-400GHz, use smooth circular waveguides and the oblique detection is achieved

at two toroidal angles: φ = 10o and 20o (where φ is the angle with respect to the normal to the magnetic

field), by using different combinations of fixed mirrors. The common final mirror is elliptical in order

to control the size of the final beam. This arrangement has been chosen in order to accommodate a

minimum number of mirrors into the limited space available.

A vacuum boundary with double dielectric windows and inter-stage vacuum was designed to operate

in the 60-190GHz range. Existing instruments will be coupled to the corrugated waveguides by quasi-

optical (QO) boxes. These boxes are built in such a way to allow for flexible configuration of input/
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output ports along with the capability of adjusting polarization and frequency separation. This

paper presents the analysis and design of the antennas, corrugated waveguides, vacuum windows

and instrument interface for reflectometry measurements. The analysis for the design of the antennas

for the Oblique ECE diagnostic is presented in a separate paper [2].

2. OVERALL SPECIFICATIONS

The microwave access enhancement consists of:

• 4 antennae and low-loss microwave transmission lines for existing reflectometers,

• 2 oblique viewing antennae and transmission lines for ECE measurement of the ECE spectra.

The antennae assembly will be located in the upper Limiter Guide Tube (LGT) at octant 8, sector B.

This is a plug-in assembly composed of 6 in-vessel antennae and waveguide connections.

Six double windows, set at the outer end of LGT, will form the vacuum boundary. Outside the

vessel there will be 6 waveguides (4 corrugated for reflectometry and two smooth bore for ECE) from

the Torus to the instruments in the Diagnostic Hall. Waveguide runs are about 40m long and require

about 9 changes in direction. The two smooth bore waveguides and one corrugated are to be relocated

from the lower main vertical port of octant 4. The remaining three corrugated waveguides are new.

The corrugated waveguide runs will be built up from 31.75mm internal diameter tubes, in which

corrugation has been optimised for HE11 hybrid mode propagation. A window box assembly at the

output of the cluster will provide connection between antennae and waveguide lines, using a Gaussian

telescope. Another function of the window box is to form a boundary between the high Torus vacuum

(10-9mbar) and the ambient atmosphere in the Torus Hall. Eight QO boxes, that are modular and

stackable, will be provided to interface the corrugated waveguide with existing microwave systems

[6]. After the QO boxes, fundamental waveguides will allow further in-band coupling/splitting as

required, depending on the specific systems to be connected. This new access will enable the immediate

use of the existing reflectometry instruments at JET. These comprise the four correlation reflectometers

of KG8b and one full band swept reflectometer experiment, KG98a (although simultaneous operation

of KG8a and KG8b instruments may have frequency restrictions due to mutual interference between

the systems). The detection system for the Oblique ECE diagnostic is a new multi-channel Michelson

interferometer with fast scanning capabilities [3] that is currently being installed at JET. This instrument

can acquire and ECE spectrum in the frequency range of 70-500GHz approximately every 10 ms and

will allow simultaneous measurements of the ECE spectrum at different angles.

3. PLASMA PARAMETERS AND FREQUENCY RANGE

To estimate the frequency ranges available to use in the new millimeter wave access to the JET

plasma simulations were performed using data from two different discharges at specific times

i) Pulse No: 52735 at 60.0s – high-δ H-mode, with peaked ne profile, BT = 2.4T; ii) Pulse No: 52972

at 62.5s – high-δ L-mode, BT = 1.7T. All data was scaled to two different values of the magnetic

field, BT = 3T and BT = 3.5T, being the scale factor defined as s=B′T/BT (where B′T is the expected
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magnetic field) and corrected for relativistic effects due to temperature.

For BT = 3T, the range of frequencies available to reflectometry is 65-125GHz, slightly reduced

to 65-120GHz in the H-mode peaked ne profile case (Fig. 1). For BT = 3.5T, the range of frequencies

available is 75-145GHz for both cases.

For ECE measurements, the broad spectral coverage of the Michelson interferometer (70-500GHz)

allows the observation of the fundamental, second, third and fourth harmonic of the electron cyclotron

frequency for toroidal magnetic fields typical of most JET plasmas (1.7T- 4T).

4. WAVEGUIDE DESIGN

The required minimum frequency range for the MWA reflectometry system is 60-160GHz. The

usable bandwidth of a corrugated waveguide is defined by the ohmic attenuation which exhibits a

minimum where the boundary condition for the low loss HE1,1 mode is fulfilled, i.e. the corrugation

depth is close to a quarter wavelength. This bandwidth also increases with the square root of the

waveguide diameter. The waveguide corrugation is defined by three parameters: (i) the corrugation

depth d, (ii) corrugation width w, and (iii) corrugation period p. Fig.2 shows the calculated ohmic

loss for a circular corrugated waveguide carrying the HE1,1 mode with an internal diameter of

31.75mm, w = 0.5 mm, p = 0.75 mm at two different corrugation depths.

For both corrugations, Bragg reflections and the excitation of surface waves occur only at higher

frequencies [4]. Bragg reflections depend on the corrugation period with the Bragg condition for

coherent back scattering:

(1)

where f is the frequency, p the corrugation period and c0 the speed of light. In our case Bragg

reflections occur for frequencies f ≥ 200GHz.

The excitation of the lossy EH1,1 surface wave depends on the corrugation depth d and is expected

to occur slightly before: f = 238GHz, for d = 0.63mm, and f = 187GHz, for d = 0.8mm, i.e. where

the corrugation depth is approximately half the wavelength.

An open-ended waveguide carrying the HE1,1 mode exhibits good radiation characteristics as it

couples excellently (98.5%) to the fundamental Gaussian free space mode (TEM0,0) [5] (Fig.3).

The directivity could be enhanced by increasing the waveguide diameter or by adding a waveguide

taper at the end of the transmission line.

The fourth corrugated aluminum waveguide, and both the smooth copper waveguides for Oblique

ECE, are being taken from an obsolete scattering experiment at JET. The corrugated aluminum

waveguide has the same general properties as the new waveguide but is optimized for higher

frequencies (100 to 180GHz).

20
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5. VACUUM WINDOW DESIGN

A box containing six double vacuum barriers with wedged windows (Fig.4), grouped in a hexagonal

pattern, is used to couple the in-vessel waveguide and antenna system to the transmission lines.

Detailed simulations on the reflection and transmission characteristics of a double wedged window

as shown in Fig.4 were performed. The calculations were done for fused silica with a refractive

index of about 1.938 and tan ∂ ≈ 2.5 x 10 -4 . The coupling behavior of the two mirrors on either

side of the window assembly was included. Results of simulations with parallel wedge angles show

that the main beam exiting the window is off axis with relatively large output beam angles and

beam shifts. Furthermore, it was observed in this case that the beam displacement factor is not

constant across the diameter of the beam, which is not preferable. For this reason opposite wedge

angles (Fig.4) are to be preferred. This gives a constant displacement factor which can be simply

compensated in the design by slightly shifting the coupling mirrors off-axis in the design. Simulations

were done with opposite wedge angles of 5o, 7.5o and 10o for E- and H-plane polarizations. Output

beam shifts and angles are given in Table 1.

   Wedge angle [o] Beam offset [mm]     Beam angle [o]

5.0 1.4 0.026

7.5 2.1 0.087

          10.0 2.8 0.207

Table 1 - output beam offsets and angles

The power transmittance for the fundamental mode is better than -3.1dB at all wedge angles. The

wedge angle of 7.5º has an optimal transmission ripple, that is within the objectives from about

80GHz (0.46dB), but the reflection characteristic for this wedge angle does not meet the objective

(< -14 dB). Although the reflection characteristics also do not meet the objectives at a wedge angle

of 10o, the difference is small. Therefore, it was decided to use a wedge angle of 10o, which is a

compromise between acceptable transmission ripple and reflection levels.

On JET, vacuum integrity is paramount so all windows consist of two disks. The inter-space

between the disks is filled with neon at a pressure of 0.5 bar so that the breakage of either disk is

immediately evident. The region surrounding each window is lined with Macor, a machineable

glass-ceramic. This is done to reduce the amount of stray radiation that is reflected into the waveguide.

6. INTERFACE, QUASI OPTICAL BOXES

The connection of the instruments to the transmission lines is done using Quasi Optical Boxes that

consist of a modular quasi-optical system of mirrors, with focal length 120mm, in co-focal arrangement,

with a magnification factor of one[6]. Alignment and matching of the focal planes are provided by the

mechanical structure. Each mirror box can hold a splitting element, either a grid or a Frequency

Selective Surface, so the fundamental block is a one-in-two divider/combiner.
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The splitting element can be either rectangular (polarization adjustment by rotating of the boxes)

or circular (able to rotate but smaller). The additional truncation loss in the later case (worst case

is 2.66w for an active splitter diameter of 74mm) has a negligible impact on performance.

Coupling with fundamental waveguide is achieved with small flare angle conical horns (5o, limited

by mechanical constraints). Horns end with a circular waveguide port large enough for the lowest

frequency required, using commercial transitions for interfacing to the proper rectangular waveguide.

The interface with horns and between boxes allows rotation, either free or in 22.5o increments, for

maximum flexibility and optimization of polarization.

The interior of the boxes is covered with Eccosorb TM AN72 to provide absorption of stray radiation.

In the case of the ECE diagnostic, the emitted radiation is optically coupled to the Michelson

interferometer entrance. A polarizing grid at the waveguide output will select the desired polarization

(X- or O-mode).

7. INSTALLATION AT JET.

Waveguides attached to the JET vacuum vessel have to withstand two loading conditions, thermal

expansion of the vacuum vessel (20 mm radial) and acceleration following a plasma disruption (7g,

30ms radial and toroidal). Stress analysis of the waveguides close to the torus has resulted in the

copper ECE waveguides being changed to high strength brass (>160 MPa yield stress) in this region.

The 6 antenna tubes entering the JET vacuum vessel through a Limiter Guide Tube port are subjected

to fast magnetic field variations during disruptions. The design had to be compatible with these

electromechanical loads. In particular the tubes used needed to be supported at seven positions in

order to limit the bending moments. As the chosen supplier for the antenna tubes is able to produce

only short segments to the desired accuracy, the antenna tubes are made by screwing together segments,

which are joined at the intermediate supports. Tests have been carried out to confirm that tube joints

are compatible with the electromechanical torque and bending moment they will experience during

disruptions. The design of the antennae and window box has been constrained by the requirement to

repair or remove it by remote handling techniques. The waveguides will penetrate the ground floor of

the Diagnostic Hall, and the area assigned to the microwave diagnostics is the area around the floor

perforation. The microwave reflectometers are sensitive to the polarization therefore the layout of the

quasi-optical boxes must take this into account using the scarce space available. The instruments will

be placed axially around close to the position where the waveguides emerge from the floor.

8. PERFORMANCE TESTS.

In order to adapt the instruments to the new transmission line, all the blocks involved should be tested,

this comprises; the instruments, quasi-optical boxes, oversized waveguides and antenna cluster. With

respect to the antenna/waveguide system, it is very important to characterize the transmission losses,

cross talk level, mode conversion, and beam pattern. The alignment of the ECE antenna will be also

checked. From the previous list the performance of the quasi-optical box will be characterized by
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CNR, and the waveguide transmission line (waveguides and miter bends) by IPP, the other two blocks

will be tested at JET by the associations involved.

From a reflectometer point of view, it is very important to characterize the transmission losses,

cross talk level, mode conversion, and beam pattern.

The tests performed to the antenna cluster should give all the information about these values at

least for the bandwidth in use in reflectometry: KG8b 75-77, 86-87, 92-96 and 100-106GHz; KG8a

50 -75 GHz. In the case of the ECE measurements some of the tests will be performed at higher

frequencies (up to 200GHz) in order to secure reliable measurements at least for the frequency range

corresponding to the second harmonic emission for typical JET magnetic fields of 1.7T – 3.7T. All the

work related to the characterization of this new millimeter wave JET access system will be presented

in future publications.

CONCLUSIONS

The difficulties on millimeter wave reflectomety at JET determined by the poor performance of the

existing waveguides and antenna system lead to the development of a completely new millimeter-

wave access. This new access system was designed to improve the performance of reflectometry and

enable the installation of antennas for oblique viewing ECE. This project comprised design development

and manufacturing efforts for both in-vessel and ex-vessel components, namely antennae, waveguides,

vacuum windows and instrument interfaces. The project proposal states an expected improvement in

reflectometry S/N ratio is 30dB. If realized, this will allow broad band reflectometry, for the

measurement of the electron density profile, for the first time in JET. On the other hand, the installation

of the ECE antennas in JET will provide a unique opportunity to investigate oblique ECE spectra (the

reader is referred to [1] for more details) in high-Te plasmas under conditions approaching those

relevant to a tokamak reactor.

These measurements can contribute significantly to improve the ability to interpret accurately

ECE measurements in ITER.
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Figure 1: Pulse No: 52735 at 60s scaled to BT = 3T. The
75-110GHz (W band) is indicated by the dashed magenta
lines.

Figure 2: Calculated ohmic attenuation of corrugated
HE1,1 waveguides with different corrugation depths.

Figure 3: Calculated far field radiation pattern for the
open-ended waveguides type B.
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Figure 5: Reflected and transmitted power for wedge
angles of ±10o.

Figure 6: Example of arrangement of the splitting blocks.
One port (bottom right) terminated with a horn to connect
an instrument and one or two (top right) available for
further cascading, depending on grid orientation. The
corrugated waveguide input is top left. Each of the blocks
can be rotated around the interconnecting flange.

Figure 7:  Instruments disposition at the Diagnostic Hall (J1D).
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