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INTRODUCTION

Comparisons between numerical models and present day tokamak devices rely upon accurate

diagnostic measurements of the key plasma parameters.  In assessing the effect of energetic particle-

driven instabilities upon their confinement, it is extremely important to measure the amplitude of

internal modes. This is generally difficult to do accurately as it usually involves extrapolating field

measurements at the edge to determine the mode amplitudes in the plasma core. In this work we

demonstrate how it may be possible to calculate the absolute value of the amplitude of these modes

from the measured spectrum of frequency sweeping that has been observed in the excitation of

Toroidal Alfvén Eigenmodes (TAE) [see Ref. 1 and references therein]. In particular, numerical

simulations of the bump-on-tail kinetic instabilities near marginal instability have shown how a

hole and clump spontaneously appear in the particle distribution function and how this process

supports a set of long-lived Bernstein, Greene, Kruskal (BGK) nonlinear waves that shift up and

down in frequency. A similar nonlinear kinetic process of hole-clump production also occurs for

TAE modes driven unstable by the radial gradient of the fast ion pressure. This mechanism is a

primary candidate to explain the fast frequency sweeping observed in several experiments. Figures

1 and 2 show two such experimental examples in the JET and MAST tokamaks respectively.

1. THEORETICAL BACKGROUND

Theoretical analysis and numerical studies have shown that plasma modes destabilized by kinetic

drives can induce frequency sweeping. The sweeping results from the spontaneous excitation of

phase-space structures when the system is near marginal instability, i.e. when |γL - γd| << γL.  In this

case a phase-space explosion is triggered, which, upon relaxation, leads to the formation of BGK

nonlinear modes. The distribution function in the trapping regions form a hole and/or a clump,

determined by the property that the trapped distribution has a lower or higher value respectively

than the surrounding passing particle distribution function. The background plasma dissipation that

is present does not damp the wave, but instead forces the wave frequency to change. This change

allows the “rising” holes or “falling” clumps to extract energy from the ambient distribution so that

there can be power balance with the dissipative power being extracted by the background plasma. The

rate at which the frequency sweeps is determined by the wave-particle nonlinearity that relates the

frequency shift δω to the nonlinear bounce frequency ωb of a particle trapped in the potential well of

the wave. A simplified model of the process gives the scaling as, δω = C1 (γd /γL)1/2 ωb
3/2 δt1/2,  ωb=C2γL

with C1 and C2 being constants of proportionality (C1 ≈ 1 and C2 ≈ 0.5).  More general simulations

show that the estimates for C1 and C2 remain within 10% of these values when phase space structures

are spontaneously formed by TAE excitations in a tokamak. Hence, we use these values in the

estimation of internal magnetic fields in the frequency sweeping data of the MAST experiment.   It

is also important to note that phase space structures only spontaneously form when γL ~ γd, and as

the rate of frequency sweeping is proportional to (γL/γd)
1/2 it follows that the internal field amplitude

and the rate of frequency sweeping is insensitive to the closeness to marginal stability.  Thus, the
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recording of the time scale of the frequency sweeping determines the bounce frequency of trapped

particles.  In turn, the bounce frequency depends upon the mode amplitude through the relation, δω
= C1 (γd /γL)1/2 ωb

3/2 δt1/2,  ωb=C2γL ,where here the mode amplitude is defined in relation to the

toroidal magnetic field on axis, B0, as, A = δBr /B0 and C3 is another constant of proportionality that

generally has to be determined numerically (as discussed here). The time evolution of the frequency

sweep described by equation (1), δω ~ δt1/2, follows from the theory which shows that the mode

amplitude, A, and thus the nonlinear bounce frequency, ωb, remains constant in time as long as the

frequency shift (which is assumed larger than the linear growth rate) is not too large as to break

some of the underlying theoretical assumptions. Collisionality, which we neglect in this work, can

be expected to cause the phase-space structures to collapse and lead to a decrease in mode amplitude.

However, work performed including such effects shows that the frequency shift still follows the

δt1/2 scaling even when the mode amplitude decays. Thus we have an expression for how the

absolutely calibrated mode amplitude in the core of the plasma can be determined from the observed

sweeping rate of the TAE frequency, =
δBr

B0

1

C1

γL

γd

δω2

C3 δt22

2/3

.The numerical method of obtaining

the constants C1 and C3 from a numerical code is described below.

2. NUMERICAL MODELLING

Frequency sweeping close to marginal stability has been numerically modelled in the HAGIS code

by introducing an additional external damping mechanism, represented by the damping rate, γd.

Simulations are initially performed with γd = 0 to obtain the mode’s linear growth rate, γL, without

extrinsic dissipation.  This then allows the selection of γd ≈ γ L, so that the system is near marginal

instability. Then the simulations are repeated, but now near marginal instability, where conditions

are favorable for the demonstration of spontaneous frequency sweeping.

We consider the case of a circular cross-section plasma with an inverse aspect ratio, a/R0 = 0.3 and

a monotonically increasing safety factor from an on-axis value of q0 = 1.1 to an edge value, qa = 3.5.

The HAGIS code is used to simulate the case of a distribution of co-passing energetic particles with

λ = v||/v = 1. The growth rate is first numerically measured in the absence of any additional external

damping mechanisms, i.e. γd = 0, and for the closest studied cases we use γL/ω0 = 0.027 ± 0.002.

The mode is then made marginally unstable by adding an artificial external damping mechanism

such that γd /ω0 = 0.02 and the simulation is repeated. Then the mode amplitude saturates at a

constant level, δB/B ≈ 10-4 as shown in fig.(3). A Fourier spectrogram of the evolving mode reveals

a predominantly down-shifted frequency sweeping branch as shown in fig.(4). Thus in this case,

only a clump in the fast ion distribution was produced. The over-plotted white line, which is the

theoretically predicted frequency sweeping expression, δω = 0.4γL(γdt)
1/2, shows good agreement

with the simulation for the frequency shift of the hole. We also find that good results emerge for a

simulation with reduced energetic particle drive, where γL/ω0 = 4.5 × 10-3
 ± 0.5 × 10-3 and an

external damping rate, γd /ω0 = 4 × 10-3.
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3. RESULTS

The HAGIS code was used to determine the mode amplitude of a frequency sweeping global mode

that arises in the tight aspect-ratio MAST tokamak for the data shown in figure 2.  A mode number

analysis using a toroidally distributed array of magnetic pick-up coils around the inside of the

vessel identifies this mode as an n = 1 mode. This discharge was heated by Neutral Beam Injection

(NBI) with the injected deuterons having an energy of 40keV. The magnetic field strength at the

magnetic axis was 0.5T, the major radius was 0.77m and the minor radius 0.55m. To identify the

constant of proportionality between the nonlinear bounce frequency and the mode amplitude a

single particle trajectory was followed in the MAST geometry when there is a toroidal wave field

present with the radial displacement of the magnetic field given by, ξ(r,t) = A Reξ(r,θ) exp(inφ-

iωt).  In this case, energy, E, and toroidal canonical momentum, Pf, are no longer conserved quantities,

but the quantity H’ = E - (ω/n)Pφ remains invariant. It is then possible to map out the island structure

of fast ions trapped in the TAE and directly determine the relation between ωb and δBr. This was

done for the value of H’ = 20 keV which was chosen because the parallel velocity of fast ions at the

center (and the peak of the eigenfunction) was equal to the Alfvén velocity, v|| = vA. The amplitude

of the mode was arbitrarily chosen to be A = dBr/B0 = 10-3. Indeed it was confirmed that the

nonlinear bounce frequency scales with the square root of the mode amplitude.

We now have sufficient information to estimate the amplitude of the TAE mode that is seen to

sweep in frequency in the MAST discharge discussed above and we find an  absolute amplitude of

δBr ≈ 2 × 10-4T. We note that in the experiment that the measured amplitude of the perturbed magnetic

field at the mid-plane Mirnov coil was 10-5T. Using the MISHKA code with an ideally conducting

wall at R/a = 2 to calculate the linear mode structure in the plasma and vacuum regions allows the

peak amplitude to be determined to be δBr ≈ 5 × 10-4T.  This value is in good agreement with that

obtained above using the spectroscopic observation of the mode’s frequency sweeping rate.

CONCLUSIONS

A spectroscopic technique has been formulated for inferring the internal amplitudes of frequency

sweeping modes that start from the linear TAE frequency and remain in the TAE gap during the

sweep.  The example presented is that of a frequency sweeping TAE mode in the core of the MAST

tokamak.  In this case (MAST Pulse No: 5568 at t = 65ms) the n = 1 global TAE amplitude was

inferred to be δBr /B0 ≈ 4 × 10-4. This result correlates well with direct coil measurements at the

edge and the inference, from MISHKA, for what the fields should then be at the mode center.
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Figure 1: Example of frequency sweeping mode during a
shear optimised D-T pulse in the JET tokamak.  In this
case, δω/ω0 ~ 5% in δt ~ 1 ms.

Figure 2: Magnetic spectrogram showing frequency
sweeping n = 1 core-localised mode in MAST Pulse No:
5568.  The first event is seen to sweep by 18kHz in a time
of 0.8ms.

Figure 3: Evolution of mode amplitude in the presence of
an artificial external damping mechanism such that γd/
ω0 = 0.02 (red) and γd /ω0 = 0.004 (blue).

Figure 4: Sliding Fourier spectrum showing frequency
evolution of marginally unstable TAE mode in response
to kinetic a-particle drive (γL/ω0 = 0.027) and external
damping (γd/ω0 = 0.02).  The over-plotted white line shows
the theoretically predicted frequency sweeping rate of
0.4γL(γdt)

1/2.
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