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ABSTRACT

A local analysis technique is presented for the analysis of MSE data to deduce the safety factor q in

tokamak discharges. The technique preserves the individuality of the measure by a simple rule of

translation of magnetic field pitch angle measurements into q-values. Based on a geometric approach,

and the observation that the flux surfaces shapes are strongly constrained by that of the last closed

flux surface (LCFS), by the position of the magnetic axis and by a few more global parameters, it

provides a robust, non-subjective, accurate technique that is useful for the experimental study of q-

profiles and for the evaluation of its uncertainties. It also provides a useful tool for plasma control

experiments as it does not submit data to a preliminary search of minima in a multi-parametric

domain, a procedure that may lead to jumps in the time behaviour of the produced results.

1. INTRODUCTION

A crucial logical step is required when inferring, from local measurements obtained by Motional

Stark Effect (MSE) polarimetry [1-2], the local values of the safety factor q as  this parameter

pertains to the entire flux surface, while the measurement determines  magnetic the field pitch

angle ζ only on a given point. Its evolution over the surface remains to be determined.

Usually to link the two quantities a search is performed, in a given functional class, for equilibria

that best-fit the measured pitch angles together with other constraints. This is a powerful technique

supplying solutions that are more or less closely adapted to the MSE data and that help to cross-

validate them with other measured and theoretical information. It implies, however lack of a direct,

point-to-point link between measurements and deduced q values. Furthermore the weights attributed

to different channels (and to MSE relative to other diagnostics) may have to vary with their evolving

condition or temporary malfunction so that the mutual influence among channels varies too, leading

to difficulties in following the plasma evolution and comparing different cases. Also, the procedure

may fail to describe properly certain cases or induce a bias in certain regions of the plasma.

Here we present a complementary technique that preserves the one-to-one relation mentioned

above. It is based on the observation that global plasma parameters and especially the boundary

shape of the discharge, as they can be determined by the magnetic measurements, strongly constrain

the flux surfaces geometry in the bulk of the discharge. The resulting uncertainties are, therefore,

moderate and allow a safe local deduction of q from every single data-point.

A similarly local technique applied to the measurement of the toroidal current density jt was

published recently [3]. Based on the assumption of constant elongation and negligible Shafranov-

shift ∆, it uses a Taylor series expansion of the poloidal magnetic flux to derive jt in terms of both

the local value and the radial derivative of the poloidal field measurements. Application of our

method, which assumes that the elongation k, as well as D and the triangularity d, varies from one

flux surface to another, would only require the derivative. Here however we shall limit our analysis

to the safety factor alone.

Our geometrical approach leads to a straightforward breakdown of the relation between
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measurement and deduced quantity into a sum of different terms. This makes explicit the role of the

different geometric parameters and of their derivatives in determining q. It also provides, therefore,

by combination of several contributions, an easy evaluation of its uncertainties, a task that might be

more cumbersome with best-fitting procedures. Based on this technique, a unique recipe is adopted

that always produces results with no convergence problems and without prior evaluation (and

consecutive exclusion) of bad channels as any incorrect local measurement does not affect results

obtained from the other. The analysis is robust and can therefore be safely performed automatically,

used in real-time for plasma control purposes and readily deliver results immediately after the

experiment.

Throughout our paper, we shall assume that the MSE measure points are in the plane of the

magnetic axis, where the poloidal magnetic field is purely “vertical" or in the Z direction (in

cylindrical coordinates R, φ, Z).

2. THE LINK BETWEEN BT/BP AND Q

The evolution of the poloidal magnetic field intensity over a flux surface is described by

Βρ(ρ,0) = Βρ0(ρ) (R0+∆(ρ)) Rρ,0)-1 (dχ/dρ)-1,

where dx is the distance between two neighbouring surfaces of minor radius ρ and ρ +dρ, and R0 is

the mid-major radius of the last closed flux surface.

Adopting for the flux surfaces equations the:

R=R0+∆(ρ)+ρ cos(0+δ(ρ) sin 0), Z = k(ρ) ρ sin 0,

(which describe well, for our purposes, virtually all of JET [4] or DIII-D [5] equilibria, up to ρ/α =

0.8-0.95, α being the value of ρ on the LCFS) we obtain

dχ/dρ = [k/H(k,δ,0)] [1+F1+F2 d∆/dρ + F3 dlnk/dlnρ + F4 dδ/dlnρ] ≡ k G/H.

Here H = (ds/dθ)/ρ and s is the arc length on the poloidal cross-section of the flux surface. About

the functions Fi(δ,θ) we note the relations:

Fi(δ,0) = Fi(δ,π) = 0, i + 1,3,4 F2=cos 0,

implying that, on the magnetic axis plane,

Bp(ρ,0=0, π) = Bp0(ρ)(1±d∆/dρ)−1, (1)

where ε = ρ/(R0 + ∆(ρ)). A similar relation holds for the toroidal field Bt: Bt(θ=0,π) = Bt0 (1 ± ε)-

1.

The link between Bp/Bt and q is then given by

1

2π  ds = ε 2  d0p

1

R

G

1 + εcos(0 + δ sin 0)
Bt0

Bp0

Bf

Bp∫  ∫q =
π

0

             
Bt0

Bp0

k

 1- ε2

d∆
dρ

d ln k

d ln ρ
dδ

d ln ρ
= ε (2)1 + ƒ1 + ƒ2 + ƒ3 + ƒ4
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The four functions fi(e,d), calculated as powers series of d, are to the second order in that variable

ƒ1 ≈ ;+ [2t2 -  ε2t1] [6t2 -  3ε2 − ε4]1
2

1
2

δ
ε3

δ
ε4

ƒ2 ≈ −t2 -−(2t2 -  ε2) (18t2 + (5t1 -14)ε2) ;1
2

1
4

δ2

ε3
δ
ε2

ƒ3 ≈ (−t2 + ε2) -−t2 + (1+t2)+ [6t2 + (5t1 -8)ε2 + 2ε4] ;1
ε2

ε2

2
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4
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ε3
δ
ε3

ƒ4 ≈  −t2 +  1−    t1 −3t2 +    ε2 − ε4 t1 − 5 ε4− 8t4 + (13 − 9t1)ε2 ++ε2 + 1
2

δ
ε4

δ2

ε5
3
2

4−    t1
5
2

1
ε3

where t1 = 1 − ε2  and t2 = 1 − t1.

These functions have, of course, finite limits for ε → 0, their asymptotic forms (truncated to second

order in ε) being in that limit

3

8
f1 ≈      εδ −       −      ε2   δ2;1
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We note that f1(ε,0) = 0 and that, therefore, for a purely elliptic cross section and d∆/dρ = 0 the

exact formula is

q = ε (Bt0/Bp0) k (1-ε2) –1/2.

The expression of q of eq. (2) provides a useful breakdown of the different effects contributing to

the determination of the safety factor. Its cylindrical approximation, qcyl = ε (BT0/BP0), is just

modestly increased, for small ε, by the toroidal effect (the factor (1-ε2)-1/2 in eq. (2)) but is strongly

affected by the linear dependence upon the elongation k when this is considerably larger than one.

Other effects (involving the functions fi) usually become increasingly significant for ρ increasing

above a/2 and they may account for up to 20-25% of the q value at ρ/a ≈ 0.9. The highest among

these contributions is usually due to dk/dr followed by the one due to dD/dr that may become more

relevant, even for ρ < a/2, for higher beta poloidal.

3. GEOMETRY OF FLUX SURFACES

The geometry of flux surfaces is predictable with its uncertainties if the plasma outer shape, magnetic

axis position and a few other global parameters are known.
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Indeed both on JET and on DIII-D we found the elongation at the magnetic axis k0 to be strongly

linked to the edge elongation k(a), the internal inductance li, the poloidal beta βp, ∆0/a, where

∆0 = Rm  R0 is the Shafranov-shift on the magnetic axis (whose major radius coordinate is Rm), the

upper and lower triangularity. A more thorough analysis was conducted on DIII-D (where a wider

variety of plasma shapes is more frequently used) based on equilibria from the MSE-constrained

EFIT procedure [2]. From a set of 400 random-chosen pulses, we used all the time-slices where the

procedure converged. For this set (~ 45000 time-slices) regressions can be found of k0 versus the

above parameters leading to predictors kp0 of k0 such that σ ≈ 0.05, where σ is the standard deviation

of k0/kp. Also, for more than 95% of the data 0.9 < k0 /kp0< 1.1 and, for more than 99.9%,

0.83 kp0 < k0 < 1.21 kp0. The set densely explores (i.e. with the densest 95% of data) the ranges

1.5 ≤ k(a) ≤ 2, 0.7 ≤ li ≤ 1.6, 0.12 ≤ βp ≤ 1.8, and more sparsely (the densest 99.9%) the wider ranges

1.3 ≤ k(a) ≤ 2.1, 0.55 ≤ li ≤ 2.5, 0.01 ≤ βp ≤ 3.2, with k0 covering densely the interval 1.2 ≤ k0 ≤ 1.7

and more sparsely 1.2 ≤ k0 ≤ 1.7. It is certainly representative of, if not exhaustively embodying,

the wide variety of plasma configurations run on DIII-D.

Using one of these empirical scaling laws, the  k profile is given by k(ρ) = kp0+ c(k(a) k(0)) (ρ/

a)ak, where ck ≈ 0.3 0.5 and ak ≈ 4 6 can be optimised depending on configuration details (e.g. X-

point or limiter ). We have ck < 1 to account for the elongation drop in the outer layers of the

confined plasma (say where ρ/a > 0.9 0.95). The relative uncertainty (two sigma) on k(ρ) then

varies from ±10% in the inner core to ±5% at ρ/a = 0.9. The uncertainty on  dk/dρ is estimated as

±[(0.4 • dk/dρ)2 + (k(a)-kp0)2/a2]1/2.

We assume δ(ρ) =δ(a)[ cδ1 (ρ/a) + cδ2 (ρ/a)aδ] for the triangularity with cδ1 ≈ 0.1 0.2, cδ2 ≈ 0.25

0.4 and aδ ≈ 10-15, with uncertainty estimated as ±20% for d(r), and as ±[(0.5 • dδ(ρ)/dρ)2 + δ(a)2/

a2]1/2 for dδ/dρ.

For the Shafranov shift’s profile we use

∆(ρ) = ∆0{(1-(ρ/a)2)m+2 + [1-(1-(ρ/a)2)2] (1-(ρ/a)n)}.  (3)

It permits to specify independently the edge derivative of

∆ with respect to ρ, ∆’(a), and its second derivative on axis, ∆’’(0), with two exponents, m =

a2 ∆’’(0)/(2∆0) and n =  a ∆’(a)/∆0. For high core pressure gradients, ∆’’(0) can be significant and

affect the deduced q-values. In these cases, for higher ∆’’(0), ∆(ρ) may have an inflection point

(∆’’ = 0, see fig. 1b). Also, when ∆0 > a |∆’(a)| the profile must have an inflection (fig. 1c), as ∆’(0)

has to be zero.

We get Rm, needed to determine ∆0, from the MSE data by zero-search in the pitch angles trend.

This leads to values of Rm that are typically stable within a few millimetres, its total systematic

error being  1-2 cm. Alternatively other estimators of Rm may be used, such as supplied at JET by

the magnetic reconstruction program XLOC [6], but  the uncertainty on Rm would be probably

higher. ∆’(a) is obtained as ∆’(a)= [Bp(ρ,0) (1+ε(a))]/[ Bp(ρ,p) (1-ε(a))], from eq. (1) where Bp(ρ,0)

and Bp(ρ,π) are deduced from plasma boundary reconstruction procedures.
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To determine ∆’’(0) we use the relation

∆"(0) = − / , (4)1

3

d2(Bp / Bt)

dR2

d(Bp / Bt)

dR

deduced from the condition that q is function of ρ alone, as eq. (1) reads q(ρ) = |Bt/Bp| (1+sign(R

Rm)∆’) 1 g(ρ), where g is also a function of ρ alone. So, requiring that , about the magnetic axis, |Bp/

Bt| (1+sign(R-Rm)∆’) be itself function of r alone yields eq. (4).

MSE measurements usually allow systematic, stable determinations of the r.h.s. of eq. (4) from

polynomial fits of these measured values: on DIII-D the fluctuation of the parameter m is typically

σm ≈ 0.1 and the systematic error δm ≈ 0.2 0.5. It is seen to range between zero (and somewhat less

i.e. apparently involving a slightly positive value for ∆’’(0)) and values above 3.

Omitting to constrain ∆’’(0) by the trend of the measured Bp/Bt over the magnetic axis (and adopting

for example a parametric expression for ∆’’(r) simpler than eq. (3), and implying ∆’’(0) = 0) would

lead to an average non-zero radial derivative in the trend of the deduced q values at R = Rm,

inconsistent with it being a function of ρ alone.  This effect becomes apparent from the data when

|m| > 1.

The core beta poloidal, defined as 
(1+k0

2)2

1+3k0
2

8π2

µ0

p"(0)

I"2(0)
βp0 ≡ −

 where p’’(0) and I’’(0) are the second

derivatives of the pressure and of the toroidal current at ρ = 0, is linked to ∆’’(0) by the relation

k0
2

1+3k0
2

2Rmagδ'(0)

1+3k0
2

βp0 = − Rmag∆"(0)− [7].

So one might hope to deduce this parameter (a measure of the “peakedness” of the core pressure

profile), from MSE data as the second term in the equation above is very slowly varying and the

third is usually small. At the present state of the art this procedure looks marginal as the uncertainty

on bp0 may be as high as 1.

We estimate the uncertainty on ∆, as ± {[(1 ρ/a) ∆Rm]2 + 0.04 (ρ/a (1 ρ/a) ∆0)2}1/2 and the relative

uncertainty on d∆/dρ at ± 50%.

4. RADIAL ELECTRIC FIELD CORRECTION

Viewing the same position from two different angles allows correction of the effect of radial electric

field Er on the Bp/Bt measurement. We have

Bp = Bp0 + (B’p0 – Bp0)/(1  ξ),

for the corrected value of the poloidal field, where Bp0, B’p0 are the two uncorrected  values,

ξ = (A1A’5)/(A5A’1), and A1, A5 and A’1, A’5 are geometric parameters characterising the two views

[8]. It appears that when ξ < 0 (ξ > 0) Bp is inside (outside) the interval [Bp0, B’p0] and when ξ  ≈1

it is far from both Bp0 and B’p0. In the first case, the most favourable, the Er effect has opposite

signs for the two views, so that the two uncorrected determinations of q will set an upper and a
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lower limit for it.  Correspondingly, the correction will slightly reduce the uncertainty on Bp (and

its effect on q) with respect to the uncorrected values, even when the uncertainty on Er is high, the

best situation being ξ = 1 where there is a reduction by 2. . For positive ξ, the uncertainty will

increase, by a factor larger than 5  if 1/2 < x < 2 (and diverging at x = 1), and equal to, or below,

5  outside that interval. Dual view for Er-correction is used on DIII-D for a large fraction of the

bulk plasma [9]. Most pairs of channel observing nearly coincident positions have x < 0 or ξ < 0.2,

suggesting routine use of the procedure irrespective of uncertainties on Er. For a small minority of

“intersections”, however, ξ ≈ 0.8.and correction would lead to unreliable results in any case.

5. OVERALL UNCERTAINTIES AND DISCUSSION

Results from our technique applied to DIII-D data are displayed on fig. 2, where

q values, as determined with and without Er-correction, are shown with their 2σ error bars.

These are determined by combining the uncertainties resulting from errors on pitch angles, on

Rm (affecting ∆(ρ) and therefore ρ(R), ε(ρ) and the relation of Bp0/Bt0 with Bp0/Bt0) on k(ρ), δ(ρ),

∆’(ρ), k’(ρ) and δ’(ρ). The uncertainty of these local values of q increases in the proximity of the

magnetic axis, and indeed for the channels that are closest to it, the result has been conventionally

been set to zero as the uncertainty becomes very large. (It should be observed that an average stable

value of q  on axis can easily be obtained from the derivative of the measured angles. We have not

drawn this value on the plot of fig.2 where local values of the q experimental determinations appear).

These uncertainties are not necessarily higher than those applicable to other techniques. Indeed

integrating information from one diagnostic with other information, while producing plausible

overall pictures compatible with most of the data, does not necessarily supply the best expected

local values for measured parameters, and may induce bias on those values.

In our analysis we must of course integrate information from other diagnostics and from theory.

We try however to point out dependencies and to analyse influences on uncertainties from external

information. Our method amounts to a simple, non-subjective, accurate (as it qualifies its own

accuracy) rule of point-to-point translation of the measurements into q-values. The data so produced

are immediately available to evaluate the experiment without prior intervention of an equilibrium

analyst. Their interpretation is straightforward and the quality of the original data transparent in the

processed results. The method is robust for plasma control purposes, as it does not submit data to a

preliminary search of minima in a multi-parametric domain. In such procedures, small perturbations

of the input data may lead to appearance of previously non-existing, distant new minima and

consequent jumps in the results from one time point to the next.

Preparations for plasma control experiments using this technique are in progress at JET.
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Figure 1: Profiles of ∆/∆0 according to eq. (3) with
parameters [m, n] equal to [0.4, 2.4] (a), [2.5, 2.4] (b)
and [2.5, 0.4] (c).

Figure 2: q-values as deduced with point-to-point analysis
on a DIII-D pulse with (smaller, dark symbols) and without
(larger symbols) Er -correction.
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