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ABSTRACT

We report several developments to the JET Tokamak survey spectroscopy beamline, which now

supports a suite of X-ray, VUV and visible instruments, located in a radiation-shielded bunker

outside the torus hall. The instruments have vacuum systems that are integrated into the tritium

circuit, and are available for D-T experiments. The x-ray and VUV diagnostics have real-time data

reduction. The proposed plasma impurity monitor for ITER is based on these developments.

1. INTRODUCTION

Spectroscopic monitoring of the plasma impurities will be essential for a burning plasma experiment

such as ITER. A spectroscopic diagnostic system must be tritium compatible, and be shielded

against neutron and gamma radiation. A wide spectral coverage, ranging from the visible to x-rays,

is necessary in order to maximise the number of observed ions and ionisation stages. For plasmas

with burn-times of hundreds of seconds, real-time data reduction will be essential for machine

protection.

The vacuum spectroscopy beamline no JET has been incrementally upgraded to incorporate the

above requirements, all of which have been demonstrated. Originally the beamline, with its shielded

bunker outside the JET torus hall (fig.1), was dedicated to a two-reflection x-ray crystal spectrometer

[1]. This instrument had excellent shielding, but a rather modest time resolution and spectral coverage.

Experience during JET D-T experiments [2] showed that a single reflection crystal spectrometer

[3] could have shielding adequate for any future D-T experiments on JET, while having much

improved sensitivity, time-resolution and spectral coverage.

Until recently, the VUV (10 – 100nm) and XUV (1 – 40nm) grating spectrometers were located

in the torus hall, close-coupled to JET. They were not operated during D-T experiments because

they had no shielding, and their vacuum systems were not compatible with tritium. Even during

high-power D-D discharges, the neutron and gamma ray induced background was appreciable. The

VUV spectrometer has been moved outside the torus hall, sharing the vacuum beam-line via a

mirror, and giving a large improvement in shielding and accessibility. A visible sight line has also

been included, primarily as a window-free reference channel for visible spectroscopy.

2. INTEGRATION OF SPECTROMETERS ONTO SHIELDED BEAMLINE

The x-ray, VUV and visible spectrometers share the beamline via mirror a chamber (fig.2) which

divides the available aperture with suitably angled mirrors, with the x-ray beam passing through

undeflected.

The main reason for the mirror before the VUV spectrometer is to collimate the beam, matching

the beamline divergence of ~1/200 to spectrometer divergence of ~1/50. A valuable consequence is

the offset of the grating and detector from the direct line of sight, thereby further improving the

shielding. The mirror was designed with the aid of the in-house OPTIC [3] ray-tracing code, with

parameters of the beamline and candidate mirrors being listed in Table.1. The spectrometer slit to
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mirror distance was dictated by available space in the bunker, a distance of just over ne metre being

the most practical. A greater separation would have been more favourable, by offsetting the

spectrometer further from the direct line of sight, and by reducing the magnification of the slit

image at the port, the mirror grazing angle of 15° was a trade-off between space and short wavelength

cut-off. Angles as low as 5° were ray-traced, and while they all wed higher reflectance from the

mirror, there was insufficient clearance in the bunker. Different mirror materials were investigated,

the most practical being gold, whose reflectance cut-off at 15° grazing angle (fig.3) closely matches

the wavelength range of the spectrometer. Although a toroidal mirror is usually the natural choice

for grazing incidence optics, ray-tracing showed that, due to the large aperture at the torus port, a

spherical mirror suffices in this case. With an aperture-filling factor of 0.915, and typical mirror

reflectance of 0.50, the sensitivity is reduced to 0.46 of the close-coupled value. A similar study

was conducted for the XUV spectrometer, using a 5º grazing incidence nickel mirror, but this has

not yet been implemented, and the instrument remains in the torus hall.

The mirror, of gold-coated glass, is mounted to a manually adjustable tilt and rotation stage.

Alignment was achieved by removing the spectrometer grating and slit, and directing a He-Ne laser

through the spectrometer centre-line, from the mirror and onto the valve at the torus-end of the

beam-line. Then the slit was replaced, with a tungsten lamp behind it, to confirm that the image of

the slit was focused onto the valve. The spectrometers and mirror chamber are mounted together on

a rigid frame which, after alignment, was bolted to the bunker foundation. In operation, the sensitivity

of the spectrometer was as predicted, and no further adjustments of the alignment have been necessary.

The mirror chamber also contains two plane mirror, one of which is coupled to a visible

spectrometer via a telescope and optical fibre. Both mirrors are mounted to piezo-electric tilt stages

that can be remotely adjusted while the system is under vacuum. The mirror for the visible channel

is of aluminised glass with a MgF2 protective coating, and an incident angle of 45°. Alignment was

initially achieved by shining a laser down the fibre and adjusting the mirror angles and telescope

focus until the fibre image was fully contained on the torus valve, as seen by a telescope via the

spare mirror. Subsequently, with the torus valve open, the location of the spot no the torus inner-

wall was confirmed by the JET In-Vessel Inspection System (IVIS). The remaining mirror was

designed to be suitable for a future normal-incidence VUV spectrometer, making the spectral

coverage of the beamline continuous from ~0.1 nm to ~1000 nm.

The vacuum system is tritium-compatible, and exhausts to the JET tritium circuit. Ingress of

tritium is minimised by a secondary beamline gate-valve inside the bunker, in front of the mirror

chamber, which is opened only during a discharge. This, combined with rapid pump-out of the

system, results in minimal tritium retention. After venting, tritium levels have been measured to be

low enough for maintenance to proceed without any special precautions.

2.1. VUV SPECTROMETER

The VUV spectrometer has a toroidal grating of major radius 919 mm and incident angle 70.6°,
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with a 450 l/mm grating normally used, covering the spectrum 10 -100 nm. The detector is a micro-

channel electron multiplier with phosphor, coupled via a fibre-optic expander to a 2048 element

photo-diode array. Spectra are stored every 11ms for post-pulse analysis. Specified line intensities

are derived in real-time, with a delay less than 1ms, and are output digitally to the JET Real-Time

Central Controller (RTCC). The Real-Time Signal Server (RTSS) makes signals available for further

processing or for feed-back control. Real-time line intensities for Fe XXIII and Ni XXV are shown

in fig.4, compared with post-pulse values. The Fe XXIII signal is interlocked to the operation of

lower hybrid current drive, in order to protect the launcher.

TABLE 1: Parameter of candidate mirror, obtained with the OPTIC ray-tracing code. A toroidal mirror gives a better
focus, but a spherical mirror is adequate for the large port at the torus. Including the mirror reflectance, the sensitivity
is effectively 0.46 of the close-coupled value.

Relocating the instrument outside the torus hall, in addition to giving improved reliability and

easier access, has resulted in a large improvement in the signal-to-noise ratio. Figure 5 shows the

noise levels in the VUV “SPRED” and XUV “SOXMOS ” spectrometers during D-D neutron

production, comparing the background away from any spectral lines, with the neutron rate, RNT.

With both instruments in the torus hall, time evolution of the background closely matches the

neutron rate. With the VUV spectrometer moved outside the torus hall, its background carries little

or no signature of the neutron rate, with at least an order of magnitude improvement in the signal-

to-noise ratio. Figure 6 shows spectra from the same discharges as shown in fig.5, where inside the

Mirror
grazing angle

(deg.)

Slit-mirror
distance

(mm)

Mirror-port
distance

(mm)

Port Height
(mm)

Port Width
(mm)

Typical
mirror

reflectance,
10-100nm

15 1138 18200 165.5 101.3 0.50

Mirror Type R1 (mm) R2 (mm) Height of slit
image at port

(mm)

Width of slit
image at port

(mm)

Fraction of
image within
existing port

Plane - - 190 500 0.172

Spherical
(selected)

8276 - 180 8 0.915

Toroidal 8276 554 36 8 1.0

Ellipsoidal - - 36 1 1.0
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torus hall, even for D-D discharges, the neutron-induced noise level exceeds that of many weaker

lines. With the instrument outside the torus hall, the background during the peak neutron production

at 7.6s is almost identical to that during the pre-neutron phase at 5.4s. This improved shielding,

coupled with the tritium compatible vacuum system, makes the instrument available for future D-

T experiments on JET. Because the beamline apertures, both at the bunker and torus ends, are much

larger than required to enclose the optical path from mirror to torus, the neutron and gamma ray

flux at the spectrometer is about 100 times higher than it would be with optimised shielding. It

follows that the signal-to-noise performance of this system is relevant to a burning plasma.

2.2. X-RAY SPECTROMETER

The soft x-ray spectrometer [4]uses crystals and multilayer mirrors to survey the spectrum from

~0.1 nm to ~10nm, with resolving power λ/δλ between 20 and 500, depending on the diffractor and

the collimation. The flat diffractors are scanned by stepper motors, with counts from gas proportional

counters being correlated with rotary encoder signals to obtain the spectra. Real-time line intensities

are derived with a time resolution of about 50ms, this being mainly limited by the scanning

mechanism rather than count-rate or computation. A spectrum of Be IV from the longest-wavelength

channel is shown in fig.7, where the line-width is dominated by the broad diffraction peak of the

Ni-C multilayer, and the slope in the continuum is due to the transmission of the 1.5 µ aluminised

Mylar detector window. Measurements with different filters and detector gases, and a masked

background channel, have shown that the background beneath the line is almost entirely due to

diffracted continuum, even during high-power D-T discharges. Due to the low resolving power, the

continuum level is relatively high, frequently exceeding the line peak. This makes it essential to

measure the continuum level away from the line, so that both continuum and line intensity can be

measured independently. Monitors that are fixed on the line peak give a signal which is the sum of

line and continuum, and which is impossible to interpret. Examples of the real-time output of line

and continuum intensities, compared with post-pulse processing, are shown in fig.8 for Be IV and

O VIII. For a period of up to a year, during the preparation, execution and clean-up of JET D-T

experiment [5], when the VUV and XUV instruments were taken out of operation, the soft x-ray

spectrometer was the main monitor of core impurities. Fig.9 shows line and continuum intensities

for the main light impurities, plotted with the neutron rate for a high-power D-T discharge. There is

no signature of the neutron rate no any of the signals. The peak count-rate in the background

channel was a few kHz, compared with a few MHz in the main lines, a signal-to-noise performance

that is adequate for any future D-T plasmas at JET. As with the VUV spectrometer, there is scope to

improve the signal-to-noise ratio by matching the beamline geometry to that of the spectrometer

optics, here by about a factor 10.

2.3. VISIBLE SPECTROMETER

Figure 10 compares spectra between the close-coupled and remote visible channels, where the

sensitivity of the remote view is broadly similar to the close-coupled view. The reduction of aperture
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incurred by the long beamline is offset by the use of much shorter optical fibres, reducing the

attenuation at short wavelengths. The main motivation for including this sight line was to have a

visible view with no plasma-facing window, to allow cross calibration of the close-coupled visible

bremsstrahlung Zeff monitors. The first optical element on the remote view is effectively the mirror,

which is 20m back from the plasma, making it relatively immune from darkening by redeposition.

This sight line was only recently commissioned, and no long-term data are yet available. Another

use planned for this view is a branching-ratio cross-calibration from visible to VUV using the

common sight line. This is expected to remove any systematic error due to variations in the local

emission flower ionisation stages, which can occur with different lines of sight.

3. APPLICATIONS

In addition to advancing the survey spectroscopy on JET, developments to this beamline have been

kept relevant to future burning plasma experiments such as ITER, and have been incorporated into

its evolving design [6-11].
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Figure 1: Three diagnostics share a shielded bunker
outside the JET torus hall: a soft x-ray survey
spectrometer, a VUV spectrometer, and a visible
spectrometer. There is no window at the torus, and the
entire beamline vacuum system is included in the JET
tritium circuit.

Figure 3: Reflectance of gold at 15° grazing incidence.
The cutoff at below 10nm is well matched to that of the
VUV spectrometer.
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Figure 5: Noise levels in the VUV “SPRED” and XUV
“SOXMOS” spectrometers during D-D neutron
production, comparing the background (away from any
spectral lines), with the neutron rate, R

NT
. Top: With both

instruments in the torus hall, the background closely
matches the neutron rate. Bottom: With the VUV
spectrometer moved outside the torus hall, viewing the
plasma via a mirror, its background carries little or no
signature of the neutron rate.
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Figure 9: Line and background intensities for light
impurities, from the soft x-ray survey spectrometer, during
a JET high-power D-T discharge. Neither the line
intensities nor the continuum background, on which the
lines are sitting, show any signature of the neutron rate.
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