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Introduction

There is evidence from different tokamaks that the onset of locked modes driven by resonant

helical error fields or linked to spontaneous MHD activity [1], produces a dramatic bulk

braking of plasma toroidal velocity that leads to a self-similar quench of the whole velocity

profile on short time scales. These observations are in contrast with the expected effect of an

electrodynamic torque resonant  at a rational surface r=rq We present a new theoretical model

based on the toroidal viscous effects due to breaking of axi-symmetry caused by resonant and

non-resonant helical field perturbations with (m=0,n) components. Analysis of the

experimental rates of mode growth (reconnection rate) and rotation damping sheds light on

the prevalent physical mechanisms.

Effect of driven reconnection on plasma rotation

In a series of JET experiments a ramp of static error field was applied with a helical

component m=2, n=1 up to amplitudes B2,1 ≈ 6.5 ⋅10−4 T  at q=2: the electrodynamic torque

brakes the plasma rotation at the q=2 surface, and when the rotation velocity Vζ(r,t) has been

reduced to a critical value, non-linear amplification of the initially linear driven response

occurs forming an island, subsequently “locked” (Figs.1a,1b) [1].The Charge Exchange

Spectroscopy Measurements (CXSM) of Figs.(1c,2) give the time history of rotation at all

radii and  show that at mode onset (at t =18.4 s) the velocity profile is braked very quickly

and uniformly across the plasma cross section, which is incompatible with a diffusive decay.

The timing and the rate of the observed global braking suggest a slowing down  mechanisms

linked to the radial and helical structure of the magnetic perturbation that  modulates the total

magnetic field as B ≈ B0 1 −ε cosθ + ˜ B m,n (θ,ζ)
m,n
∑

 

 
 
 

 

 
 
 
.The breaking of axisymmetry due to

resonant and non-resonant helical field perturbations can in fact give origin, in general, to a

toroidal viscous force of the form eζ ⋅∇ ⋅Π =
2π1/2 pi

vTi

Vζ

eζ ⋅∇ B

B

∂˜ B m,n

∂ζm,n
∑ q

m − nq
,that is

identically zero in axisymmetry [2]. It can however be readily assessed that for modes with
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(m ≠ 0, n) for normal ion temperatures, this slowing down force is too weak to account for the

observed rates of decay. On the contrary it can be shown that if it exists, an m=0,n component

of the perturbation is   O(ε−1)  and contributes effectively. The appearance of a significant m=0

magnetic perturbation is an important element of the problem and our objective here is to

show that the mode coupling due to the non circular cross section of JET is the main cause[3].

Indeed a non circular cross section, for instance an ellipse introduces m=2 n=1 harmonics that

can couple with the m=2,n=1  components of the external perturbation. The problem requires

necessary to reconsider the equations for tearing modes in general curvilinear coordinates, in

a non circular configuration described parametrically by R = R0 − ∆(ρ) + ρcosα ,

Z = E(ρ)ρsinα .In flux coordinates ρ,θ,ζ( ) ,where θ = 2π dt/ ggζζ
0

α

∫ dt/ ggζζ∫ , the

magnetic field is B = ′ F ∇ρ ×∇θ − ∇Ψ* ×∇ζ  and the velocity field is v = V0ζ∇ζ + ∇Φ ×∇ζ ,

where the poloidal magnetic flux 
  
Ψ* (ρ,θ,ζ) = Ψ0(ρ) + Reψm,n (ρ,t)e

i mθ− nζ( )

m,n s

∑  describes an

axisymmetric equilibrium term with superimposed a helical perturbation presently

considered  O(ε) . The projection along ∇ζ⋅of Faraday-Ohm law gives the equation for the

evolution of the (perturbed) magnetic flux 
∂ψ
∂t

+ v ⋅∇ ⊥Ψ* =
cη
gζζ jζ  On the rhs the ζ

contravariant component jζ of the first order current density contains indeed, through the

metric tensor, all the information about the cross talk of the equilibrium magnetic

configuration with the m,n spectrum of the perturbation:

jζ = c
4π

1
g

∂
∂ρ

[
gθθ

g
∂ψ
∂ρ

] − 1
g

∂
∂θ

[
gρθ

g
∂ψ
∂ρ

]− 1
g

∂
∂ρ

[
gρθ

g
∂ψ
∂θ

] + 1
g

∂
∂θ

[
gρρ

g
∂ψ
∂θ

]
 
  
  

 
  
  
       (1)

The Fourier series expansion of the Faraday-Ohm law generates through the required

convolution products, a sequence of coupled equations for mode m,n and sidebands m±m’.

For the present work it is sufficient to obtain the coupling of the m mode with its closest

sidebands m±2 from the tearing mode marginal stability condition ∇ζ⋅ ∇× J × B( )[ ] = 0 . For

a triplet of sidebands m-2,m,m+2,  the latter becomes

∂Ψ0

∂ρ
m − nq s( )jm,n

ζ +
′ m =−2,0,2
∑ ′ m J0, ′ m 

ζ ∂ψm − ′ m ,n

∂ρ
− (m − ′ m )ψ m − ′ m ,n

∂J0, ′ m 
ζ

∂ρ
 

  
 

  = 0          (2)

where the geometric coupling of the different harmonics is contained in the Fourier amplitude

of the current. Sorting out the real and imaginary parts of the complex equation (2) the linear

coupling between the (m=2,n) and the (m=0,n) perturbations can be obtained in the form:

  
Re j0,n

ζ( ) =
c

4π
{

∂
∂ρ

Re[(gζζgρρ )2
* ∂ψ2

∂ρ
] +

∂
∂ρ

[(gζζgρρ)0

∂ψ0

∂ρ
] − 2

∂
∂ρ

Im[ gζζgρθ( )
2

*
ψ2]} = 0       (3)
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Extracting explicitly the real quantities in (3) and integrating once one gets the linear coupling

relation of the type 
∂ψ0

∂ρ
= −

(gζζgρρ)2

(gζζgρρ)0

∂ψ2

∂ρ
− 2

(gζζgρθ)2

(gζζgρρ)0

ψ2       (4)  where (gζζgik )m  are the

Fourier coefficients of the corresponding metric coefficients With the chosen representation

of elliptic equilibrium surfaces relation (4) to   O(ε)  is

∂ψ0

∂ρ
= − E2 −1 + 2 ′ E ρ/ E

2(1+ E2 ) − E ′ E ρ− 3 ′ E ρ /E

∂ψ2

∂ρ
− 2

E2 − 1+ ′ E ρ /E + ′ E ρ2

2(1+ E2) − E ′ E ρ− 3 ′ E ρ/E( )ρ ψ2

 
  

  

 
  

  
    (5)

where it is apparent that mode coupling is induced by the elongation ratio E and its shear. For

simplicity we consider now in the large aspect ratio limit the toroidal momentum balance

equation  ρM

∂Vζ

∂t
−

1

ρ
∂

∂ρ
µ⊥ρ

∂Vζ

∂ρ

 

 
 
 

 

 
 
 

+ K(E, ′ E ,ψ2 (t))Vζ = Sζ /R 0      (6)  in the bulk of the

plasma, away from the (2,1) resonant surface;Sζ /R 0  is the NBI momentum source that

sustains the equilibrium rotation profile and

K(E, ′ E , ψ2 (t)) ⋅ Vζ =
π1 / 2p i

R0vTi

Vζ
1

n ε2

dψ 0,n / dρ
Bζ

 

 
 
 

 

 
 
 

2

n ≠0
∑ ≡ eζ ⋅∇⋅Π

m = 0
 (7) is the m=0

contribution to the non axisymmetric toroidal viscosity,that depends (through (5)) on E

(Fig.3) and the m=2 field perturbation driven by an external current ramp IEFC(t) = I0t . The

experimental observations suggest a self-similar evolution consistent with a factorization

Vζ ρ, t( ) ≅ V0 ρ( )⋅ y t( )  so that from (6) one gets: 
dy

dt
+

K(t)

ρ
y + y − 1( ) Sφ

R0ρV0

= 0            (8)

Up to reconnection the m=2 perturbation and its m=0 sideband grow linearly in time and

therefore K ∝ t2 .If initially stable ( ′ ∆ 0 ~ 0) after reconnection, the m=2 field grows as

ψ 2

dψ2
1/2

dt
≈ΓI0t  and consequently K ∝ t8 / 3 .For t ≥ t rec  equation (8) has a solution of the type

y(ˆ t ) = e
−ˆ t − 3β

11
ˆ t 11/3

⋅ 1 + e
z + 3 β

11
z11/3

dz
0

ˆ t 

∫
 

 
 
 

 

 
 
  where ˆ t = (t − t rec) / τµ , β= τµ

ˆ K /ρ and ˆ K = K(ˆ t = 1) .

Figs (4,5) show the satisfactory comparison of the observed rate of braking oat the q=2

surface and near the axis for JET shot 52061 with our theoretical prediction. In conclusion the

agreement with the observed rate of global quench of the plasma toroidal rotation validates

the mechanism associated with the non-resonant m=0 component of the perturbation coupled

by elongation E to the m=2,n=1 reconnecting one. This global braking may deteriorate

confinement as it flattens the shear of Vθ
EXB = Vζ Bθ B +

c

en iZB
′ p −1.17n i ′ T i[ ] , whereas a

localized torque could be beneficial.

[1] Nucl. Fus. 28,1085 (1988); [2] Phys.of Fluids 29 521(1986);[3] Nucl. Fus. 21,511 (1981)
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 Fig.1–a) External magnetic field waveform
b)Magnetic signals showing linear and non-linear
response(t=18.04 s). c) CXSM signals showing plasma
rotation at different radii. At field “penetration” sudden
braking is observed.
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  Fig.2–a) Magnetic signal showing linear and non-linear
response (Pulse No: 52061) b) CXSM signals showing
plasma rotation at q = 2 radius and near axis.
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Fig.3 Radial profile of  ρ-2 | ∂f0,1 / ∂ρ |2 for elongation

in the range 1<E<1.8
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Fig.4–CXSM signals showing plasma rotation decay at q
= 2 radius and near axis for Pulse 52061. Dots are
theoretical prediction from eqs. 7,8 with ) τµ=250 ms, β
= 3
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